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ABSTRACT 

Over the past few years, the use of reclaimed asphalt pavement (RAP) has been 

growing consistently from 15% in 2009 to 20.3% in 2015. The desire to use higher 

amounts of RAP is inspired by the need to lower costs, conserve energy, and preserve the 

environment. Increasing asphalt prices, and limited supply of higher quality virgin 

aggregates, are strong motivations to use RAP as a replacement for the more expensive 

virgin asphalt and aggregates. 

The main obstacle from using higher amounts of RAP is the aged and deteriorated 

properties of the RAP binder. With aging, asphalt binders suffer from oxidation which 

results in the conversion of part of the maltenes fraction to asphaltenes. Asphaltenes are 

primarily responsible for increasing the asphalt stiffness. The use of rejuvenators help 

restore the balance between the asphaltenes and maltenes, by adding more maltenes 

and/or improving the dispersion of asphaltenes.  

Current rejuvenators that are available in the market are based on several 

materials including petroleum-based aromatic extracts, distilled tall oil, and other natural 

oils (i.e., organic oils). Bio-based rejuvenators have proven to be a better and safer 

alternative to petroleum-based rejuvenators containing aromatic compounds. 

This research introduces a soybean-derived rejuvenator which is used to enhance 

the low temperature and fatigue properties of asphalt binders. During the first phase of 

the research, the effect of the rejuvenator is assessed by blending it with a neat PG58-28 

and a polymer modified PG64-28 binders. Dynamic Shear Rheometer (DSR) and 

Bending Beam Rheometer (BBR) tests are conducted to characterize the rheological 

properties of the rejuvenated binders. Temperature-frequency sweeps are conducted and 
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complex shear modulus curves are constructed to compare between the control and the 

rejuvenated binders.  

Dynamic modulus specimens are made using the rejuvenated PG58-28 and PG64-

28 binders. The impact of the rejuvenator on both the dynamic modulus and phase angles 

is studied using master curves. A comprehensive statistical analysis using split-plot 

repeated measures (SPRM) is conducted to reveal statistical differences between the 

performance of the rejuvenator in both types of binders. The preliminary results indicate 

that the soybean-derived rejuvenator was successful at lowering both the high and low 

critical temperatures of both types of binders. The statistical analysis revealed that the 

extent of modification brought about by the rejuvenator was dependent on the binder 

type. The results of the dynamic modulus testing showed a consistent reduction in the 

dynamic modulus values and an increase in the phase angles with the use of the 

rejuvenator. A Fourier-transform Infrared study (FTIR) performed on the rejuvenated 

binders indicated that their aging behavior was similar to that of the control binders, 

indicating that the rejuvenator did not adversely impact the durability of the binders.  

In the second phase of this research, a rejuvenated PG58-28 binders was blended 

with an extracted reclaimed asphalt pavement (RAP) binder. The fatigue behavior of the 

rejuvenated RAP binder is evaluated using linear amplitude sweep (LAS) testing. A 

significant increase in the fatigue life, particularly at low temperatures and increasing 

shear rate, is noted with the use of the rejuvenator. The rejuvenator was successful in 

lowering the performance grade of the stiff aged RAP binder to acceptable ranges. 100% 

RAP mixtures made and compacted into dynamic modulus and disk-compact tension 

(DCT) specimens were made using the neat PG58-28 and rejuvenated PG58-28 binders. 
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The DCT specimens containing the rejuvenator showed higher fracture energy at a test 

temperature of -6oC which indicates better thermal cracking resistance. To assess the 

effect of blending efficiency, additional DCT specimens were prepared using extracted 

RAP binder blended with the rejuvenated PG58-28 binder. The RAP/rejuvenated PG58-

28 blend was then remixed with the extracted RAP aggregate to simulate full blending. 

The DCT specimens prepared as such yielded even higher fracture energies indicating the 

significance of proper blending.   

The thermal stability of the rejuvenated RAP binder was verified using 

thermogravimetric analysis (TGA). The mass loss due to thermal decomposition of the 

rejuvenated RAP binder was similar to that of the control binder. A study of the evolved 

gases using FTIR showed that the rate of mass loss of the rejuvenator can be inferred by 

comparing the FTIR spectra at different times.  
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CHAPTER 1. GENERAL INTRODUCTION 

Using recycled materials in asphalt roads creates numerous benefits. Conserving 

energy, cutting down on harmful emissions, savings on materials and transportation costs, 

preserving the environment, reducing materials going to landfills, and not depleting the 

earth’s natural resources are among a long list of benefits that can be achieved by recycling. 

Common recycled materials in asphalt mixtures include reclaimed asphalt pavement 

(RAP), recycled asphalt shingles (RAS), ground tire rubber (GTR), steel and blast furnace 

slag. Among these materials, RAP is considered the most common aiding the promotion 

of more cost-effective construction and maintenance activities. The percentage of 

reclaimed asphalt pavement (RAP) in asphalt mixtures has been growing consistently in 

the US from an average of 15.6 percent in 2009 to 20.3% in 2015 (Hansen and Copeland 

2017).  

1.1 Reclaimed asphalt pavements (RAP) 

RAP is mainly produced from pavement milling operations and full-depth removal 

(NAPA 1996). During pavement rehabilitation projects, milling is used to grind a certain 

depth of the existing pavement to allow for a new pavement layer to be applied. Milling is 

done to maintain curbs, and structural clearance for bridges and over-passes. RAP often 

produced from milling has uniform properties, because it comes from the same pavement 

layer. Total pavement replacement involves a full-depth removal of the old pavement. RAP 

from full-depth removal operations is usually processed by crushing and sizing to provide 

consistent properties (NAPA 1996).  

The Federal Highway Administration (FHWA) and the National Asphalt Pavement 

Association (NAPA) have been pushing towards more use of RAP in pavements. Any 
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application of RAP is tied to the conditions that RAP material should meet or exceed the 

same standards as virgin materials and mixtures containing RAP should perform similar to 

or better than virgin mixtures.  Using well-engineered RAP materials and mixtures with 

50% RAP in the National Center for Asphalt Technology (NCAT) test track, satisfactory 

pavement performance was obtained in comparison to control test sections (West et al. 

2012). As the amount of RAP increases, in high content RAP mixtures, strict quality 

control measures need to be followed to ensure consistency during mix production. The 

properties of the RAP material, including asphalt content and grade, aggregate quality, 

absorbance, and gradation, must be properly determined. Knowledge of the history of the 

milled pavement including performed maintenance, and failure mode can provide insight 

into the condition of the RAP material.   

With increasing RAP content, it becomes necessary to use different techniques to 

ensure that the resulting mixture satisfies the desired performance levels. These techniques 

could include the use of softer virgin binders, utilizing warm mix technology, increasing 

asphalt content, and adding rejuvenators (Im et al. 2016). A nationwide survey conducted 

by the National Asphalt Pavement Association (NAPA) on the usage of RAP in the year 

2015 revealed that states which reported using more than 20% RAP in asphalt mixtures 

have also reported using softer virgin binders and rejuvenators(Hansen and Copeland 

2017).  

The primary concern regarding using high amounts of RAP in asphalt mixtures is 

the excessive aging and stiffness of the RAP binder (Tran et al. 2012). The RAP binder is 

more susceptible to thermal cracking, fatigue failure, and reflective cracking. Asphalt is 

composed of two general fractions: asphaltene and maltene. Asphaltenes are high 
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molecular weight solid particles which are largely responsible for the stiffness of asphalt. 

The asphaltenes form a colloidal suspension in the maltenes’ phase. The maltenes phase 

contains low molecular weight constituents which keep the asphaltenes in suspension. As 

asphalt ages, part of the maltenes phase convert into asphaltenes. In the absence of 

sufficient maltenes to properly disperse the asphaltenes, they will tend to flocculate leading 

to higher viscosity and low creep rate. Aging takes place over the short and long terms.  

Short-term aging involves volatilization of the light end components in the maltenes during 

mixing and construction. Long-term aging occurs throughout the years of service of the 

pavement and is mainly attributed to the oxidation of the maltene fraction which is 

activated by both heat and ultraviolet radiation (Roberts et al. 1991).  

1.2 Asphalt rejuvenation 

Rejuvenators are added to RAP to partially or fully restore the physical and 

chemical properties of the aged RAP binder. Rejuvenators typically contain low molecular 

weight constituents which restore the balance between the asphaltene and maltene fractions 

in the binder. They help improve the dispersion of the asphaltene and prevent their 

agglomeration, hence reduce the binder’s viscosity and enhance its stress relaxation ability.  

It is important that rejuvenators blend properly with the RAP binder during mixing. 

Uniform blending between the rejuvenator and the RAP binder ensures that the full 

potential of the rejuvenator is achieved. A study into the use of rejuvenators in asphalt 

plants was conducted by Lee et al. (Lee et al. 1983) where the authors used a dye to enable 

them to visually detect the degree of blending of the rejuvenator. It was concluded that 

proper mechanical mixing can result in uniform diffusion of the rejuvenator into the RAP 

binder. In another study, a staged extraction method was used to collect the inner and outer 
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layers of the asphalt film thickness separately(Carpenter and Wolosick 1980). The 

penetration values for both layers were monitored over a period of 100 days. Penetration 

values taken right after mixing shows the inner layer being more stiff than the outer layer. 

With time, however, the difference in penetration values between the outer and inner layer 

decreases indicating progressive diffusion of the rejuvenator into the RAP binder. The 

following four-step diffusion mechanism was suggested: 1) The rejuvenator forms a layer 

coating the outside surface of the RAP binder, 2) The rejuvenator begins to diffuse into the 

outer layers of the RAP binder until no rejuvenator is left on the outside surface, 3) The 

rejuvenator diffuses slowly from the outer layers into the linear layers of the RAP binder, 

and 4) Diffusion continues to occur over time until equilibrium is reached.  

Currently available commercial rejuvenators are based on a variety of different 

materials that are derived from petroleum based aromatic extracts, distilled tall oil, and 

organic oils(Zaumanis et al. 2014). Bio-based rejuvenators have been introduced to offer a 

safer and more environmental friendly alternative to the aromatic rejuvenators which can 

pose health concerns. Mixtures containing 40% RAP were prepared successfully using 

organic natural oils(Hajj et al. 2013). Waste engine oil, waste vegetable oil, and waste 

vegetable grease have also been proposed as potential rejuvenators (Zaumanis et al. 2014). 

It was shown that organic-based rejuvenators can outperform petroleum-based 

rejuvenators (Zaumanis et al. 2014).  

The effectiveness of a rejuvenator can be measured by its ability to improve the 

physical properties of an aged RAP binder. Rejuvenators typically lower both the critical 

high and low temperatures, increase fatigue life at intermediate temperatures, enhance 

low temperature thermal cracking resistance, and improve stress relaxation ability. 
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Several testing methods can be used to assess the binder performance including Dynamic 

Shear Rheometer (DSR) performance grading, temperature-frequency sweeps, linear 

amplitude sweeps, Multiple Stress Creep Recovery (MSCR), Bending Beam Rheometer 

(BBR) and rotational viscosity. Asphalt mixtures containing rejuvenators can be assessed 

by means of different tests, mainly, dynamic modulus testing, and disk-shaped compact 

tension (DCT) testing.   

1.3 Organization of Dissertation 

In this research, a soybean-derived rejuvenator is introduced where the effect of 

the rejuvenator on both a neat PG58-28 and a polymer-modified PG64-28 binders is first 

assessed. The effect of the rejuvenator on the rheological properties of each of the two 

binders is discussed in Chapter 2. Mixtures made with the rejuvenated binders are made 

and tested for dynamic modulus properties including modulus and phase angle values. A 

complex statistical analysis using split-plot repeated measures (SPRM) is presented 

where the effectiveness of the rejuvenator on the properties of both binders is evaluated. 

The durability of the rejuvenated binders is verified using Attenuated Total Reflection- 

Fourier Transform Infrared Analysis (ATR-FTIR).  

Chapter 3 presents a more comprehensive analysis of the rheology of the 

rejuvenated binders. Complex shear modulus master curves are used to assess changes in 

stiffness and phase angles. A Glover-Rowe diagram is used to quantify the improvement 

in fatigue behavior due to rejuvenation. Black diagrams and Cole-Cole diagrams are used 

to provide more insight the viscoelastic properties of the rejuvenated binders. In Chapter 

4, a PG58-28 binder blended with the soybean-derived rejuvenator is used to rejuvenate 

an extracted reclaimed asphalt pavement (RAP) binder. The performance grade of the 
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rejuvenated RAP binder is determined and the reduction in stiffness and enhancement in 

low temperature performance is noted. The linear amplitude sweep (LAS) is conducted to 

further assess the fatigue improvement in the rejuvenated RAP binder. 100% RAP 

mixtures using the soybean-modified PG58-28 are made and compacted into dynamic 

modulus and disk-compact tension (DCT) specimens. The DCT specimens are tested at -

6oC, and the fracture energy is obtained. The effect of blending efficiency on the 

effectiveness of the rejuvenator is highlighted in Chapter 5. DCT specimens representing 

full blending conditions are prepared and the increase in fracture energy is noted. A study 

of the thermal stability of the rejuvenated RAP using Thermogravimetric analysis (TGA) 

is also given in Chapter 5. The mass loss with temperature for both the control and 

rejuvenated RAP is measured. Furthermore, a study of the evolved gases is done using 

FTIR and the collected spectrum is used to indicate the rate of mass loss of the soybean-

derived rejuvenator. Finally, Chapter 6 summarizes the research with recommendations 

for future work.  
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CHAPTER 2. INTRODUCING A SOYBEAN OIL DERIVED MATERIAL AS A 

POTENTIAL REJUVENATOR OF ASPHALT THROUGH RHEOLOGY, MIX 

CHARACTERIZATION AND FOURIER TRANSFORM INFRARED ANALYSIS 

Modified from a paper published in Road Materials and Pavement Design 

 

Mohamed Elkashefa*, Joseph Podolskya, R. Christopher Williamsa, and Eric W. Cochranb 

Abstract 

The interest in rejuvenators has been growing rapidly in the past few years due to 

their ability to restore aged binders to their unaged state and the availability of aged 

recycled materials. The introduction of rejuvenators has made it possible to produce 

asphalt mixes with high recycled asphalt pavement (RAP) content. Typically, 

rejuvenators need to be added to the RAP bitumen in high dosages, more than 10%, to 

achieve the desired effect. In this work a new soybean-derived additive is introduced as a 

rejuvenator, at a percentage of 0.75% by weight of the bitumen. The effect of adding the 

soybean-derived rejuvenator on the rheological properties of both a performance grade 

(PG) 64-28 and a PG 58-28 bitumen is assessed using a dynamic shear rheometer (DSR), 

a bending beam rheometer (BBR), and a rotational viscometer. Dynamic modulus 

specimens for both the control and modified blends were prepared using a mixing and 

compaction temperature of 120oC, as well as a temperature of 140oC, and master curves 

were constructed using test results. The dynamic modulus data was further analyzed 

using a complex statistical technique which utilizes a split-plot repeated measure (SPRM) 

concept. It was noted that, at such a low dosage, the rejuvenator greatly improved the 

fatigue and low temperature properties of the tested asphalt binders. The dynamic 

modulus results revealed that the rejuvenator was successful in reducing asphalt binder 
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stiffness, and that the extent of such a reduction depended largely on the asphalt grade. 

Additionally, the mixing and compaction temperature 120°C had the effect of the mix 

performing better at lower test temperatures than the specimens produced using a mixing 

and compaction temperature of 140oC. The aging characteristics of the rejuvenated 

binders was assessed using Fourier Transform Infrared-Attenuated Total Reflection 

(FTIR-ATR), which revealed similar aging behavior of both the control and modified 

asphalt binders, as indicated by the evolution of the carbonyl and sulfoxides indices. 

2.1 Introduction 

Rejuvenators have been successfully implemented to offset the high stiffness and 

low creep rate of aged RAP asphalt binder. Use of rejuvenators has resulted in 

considerable improvement to low-temperature properties of mixtures with high RAP 

content (Hajj et al. 2013; Shen et al. 2007; Zaumanis et al. 2014). The key to an efficient 

application of rejuvenators is to achieve an increase in the low-temperature performance 

without jeopardizing the overall mixture properties. The use of blending charts have been 

proposed as a tool to select an optimum rejuvenator dosage to avoid undesirable rutting 

problems that may occur as a result of higher dosages (Shen et al. 2007).  

Aged asphalt binder can lose a great portion of its maltenes content as a result of 

oxidation leading to increased stiffness (Copeland 2011). Rejuvenators help replenish the 

maltenes content and rebalance the chemical composition of asphalt. They are added 

during mixing and gradually diffuse into the aged asphalt binder imparting softening 

characteristics (Carpenter and Wolosick 1980).  

Other techniques have been adopted to allow using RAP in asphalt mixes, such as 

using a softer virgin binder, increasing the asphalt content, and utilizing warm-mix 
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technology. These techniques however have been limited to mixtures with low RAP 

content (Im et al. 2016). Rejuvenators have proven to be very effective for mixtures with 

high RAP content. Over the past several years, research on rejuvenators has been 

growing rapidly. This research has been crucial for the use of mixtures with higher RAP 

contents, which would allow for additional cost savings, and considerable environmental 

benefits. A recent survey, conducted on the use of recycled materials in asphalt 

pavements, revealed that the average percentage of RAP in the US has only increased 

from 15% in 2009 to 20% in 2014 (Hansen and Copeland 2015). This percentage is 

expected to increase in the near future as researchers gain more understanding of the 

mechanism of rejuvenators and its interaction with aged asphalt binder.  

The primary focus of most studies covering rejuvenators has been to assess their 

effect on the stiffness of aged asphalt binders and the low-temperature cracking resistance 

of the treated asphalt mixtures. It was concluded that rejuvenators successfully decrease 

aged asphalt binder stiffness and improve low-temperature cracking resistance of asphalt 

mixtures (Elseifi et al. 2011; Hajj et al. 2013; Zaumanis et al. 2013).  

The relatively high viscosity that characterizes aged RAP binder results in poor 

mixing and compaction. A rejuvenator should be able to reduce the RAP binder’s 

viscosity to ensure proper blending with the virgin binder and achieve uniform coating of 

both virgin and RAP aggregates. Through reducing the viscosity, the RAP binder 

becomes less stiff and can thus blend more easily with the virgin binder. The degree of 

blending between the RAP binder and the virgin binder determines to a large extent the 

performance of mixtures containing RAP, by increasing the effective percentage of RAP 

binder that contributes to the total asphalt content (Huang et al. 2005). Being able to 
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reduce viscosity, rejuvenators can help achieve sufficient flow at lower mixing 

temperatures. The relationship between viscosity and temperature should be well 

understood. A good rejuvenator should be capable of lowering the viscosity to acceptable 

levels without the need for high dosages. High dosages of rejuvenators could lead to 

potential rutting, stripping and mix instability problems (Zaumanis et al. 2013). 

It is important to study the chemical composition of both the binder and 

rejuvenator, as well as the interaction between them. A specific rejuvenator could work 

effectively for one binder but not another. A study conducted using aromatic extract 

rejuvenators concluded that they were more chemically compatible with a ABD (PG58-

10) asphalt binder than a AAD (PG58-28) asphalt binder, leading to improved low 

temperature performance (Yu et al. 2014).    

SARA fractionation is commonly used to detect changes in the different chemical 

fractions of asphalt due to aging and rejuvenation. Conversion of aromatics to 

asphaltenes was noted with aging with no significant change in resins or saturates, as 

revealed by a study using SARA (Yu et al. 2014). Subsequent addition of an aromatic 

extract rejuvenator resulted in an increase in saturates and aromatics content and a 

decrease in the asphaltenes.   

Fourier Transform Infrared (FTIR) is used to characterize asphalt binders. Fourier 

Transform Infrared-Attenuated Total Reflection (FTIR-ATR) utilizes the concept of 

multiple internal reflection and evanescent waves to increase the sensitivity of 

measurement (Marsac et al. 2014). FTIR-ATR was used to determine the aging behavior 

of three different rejuvenators (Ongel and Hugener 2015) by comparing the evolution of 

carbonyl and sulfoxides functional groups. It was found that the carbonyl group barely 
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existed in the unaged specimens and increases notably with aging for both the control and 

rejuvenated binders. The rate of increase in the carbonyl groups was higher in long-term 

aging (PAV) compared to short-term aging (RTFO). FTIR-ATR was also utilized to 

monitor the diffusion rate of the rejuvenator into the asphalt binder (Karlsson and 

Isacsson 2003). Both C=O and the C-H bonds were used to evaluate changes in the 

diffusion coefficient with temperature. A recent study involved studying mixtures 

prepared with 40% RAP with FTIR-ATR (Poulikakos et al. 2014). The oxidation level, as 

indicated by the carbonyl and sulfoxide groups, was found to be higher for softer asphalt 

binders compared to RAP extracted asphalt binders. It was suggested that difference in 

the oxidation level was due to the rate of diffusion of oxygen which was higher in case of 

lower viscosity/softer asphalt binders. 

The production of soybean in the US constitutes about one third of the total world 

production. The state of Iowa is considered a substantial producer of soybean. The 

production of soybean in Iowa amounted to 14% of the US soybean output during a five-

year period from 2010-2014, according to a recent report published by the Iowa soybean 

association(Iowa Soybean Association 2016).This huge production is processed in the 

form of either soybean meals or soybean oil. Soybean meals are largely consumed by the 

livestock industry while most of the soybean oil is used in the production of biodiesels. 

An estimated 20% of the soybean output is used to make biodiesel oil (Iowa Soybean 

Association 2016). The process of biodiesel oil production involves transesterification of 

the soybean oil in the presence of a catalyst(Ma and Hanna 1999). The abundancy of the 

soybean oil production in the US inspires the need to look for alternative applications 

other than biodiesel production. 
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Soybean acidulated soapstock (SAS), which is considered a rich source of 

soybean fatty acids, was used as a fluxing agent for four different asphalt binders(Seidel 

and Haddock 2014). Dosages ranging from 1% to 3% were added. The SAS modification 

resulted in a consistent decrease in the critical high temperature, as well as an increase in 

the phase angle. It was also concluded that the enhancement in performance at low 

temperature was dependent on the chemical composition of the binder. A recent study 

investigated the use of soybean oil as a warm-mix asphalt (WMA) additive, at dosages 

from 1-3%(Portugal et al. 2017). The study looked at the change in the mixing and 

compaction temperatures for both a neat and a polymer-modified binder. It was shown 

that an average reduction of 2.7oC-3.4oC was noted in the mixing and compaction 

temperatures for both types of binders.  

Other than soybean oil, vegetable oils have been previously suggested as 

recycling agents or rejuvenators. Two-point bending tests performed on RAP mixtures 

modified with a vegetable oil based recycled agent showed improved fatigue 

performance and lower complex modulus  (Mangiafico et al. 2016). Waste vegetable oil 

has been used to modify 100% RAP mixtures resulting in a reduced temperature 

performance grade(Zaumanis et al. 2014). Other bio-derived rejuvenators including 

distilled tall oil and cotton seed oil were also used to rejuvenate asphalt binders(Chen et 

al. 2014; Zaumanis et al. 2015).  

2.2 Materials and Methods 

Two asphalt binder grades were used in this study, namely PG 64-28 and PG 58-

28 binders. The additive used will be referred to in a generic term as a soybean-derived 

additive. The soybean-derived additive was blended with the two binders PG 58-28 and 
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PG 64-28 at 0.75% by weight of the binder. Blending was done at a temperature of 140oC 

± 2oC using a Silverson shear mill operated at 3000 rpm for one hour.  

To assess changes in the Performance grade (PG) due to modification, dynamic 

shear rheometer (DSR) and Bending beam rheometer (BBR) tests were conducted 

according to AASHTO T315 and AASHTO T313, respectively. Testing was performed 

on both the control and modified PG 58-28 and PG 64-28 binders. Rolling Thin Film 

Oven (RTFO) aging was done according to ASTM D2872 at 163oC for 85 minutes while 

PAV aging was performed on the RTFO aged binder according to ASTM D6521 for 20 

hours at 100oC and 2.1 MPa pressure.  

The viscosity-temperature susceptibility (VTS) of the control and modified 

binders was studied by measuring the viscosity of the unaged control and unaged 

modified binders at different temperatures. For the viscosity measurements, a rotational 

viscometer was used according to AASHTO T316. 

Dynamic modulus testing was conducted to evaluate the stiffness of both control 

and modified asphalt mixtures according to AASHTO T342. All test specimens for 

dynamic modulus testing were made using the same binder content and aggregate 

gradation, to preclude any effect of changes in the mix design. Mixing and compaction 

were done at a temperature of 120oC, as well as a temperature of 140oC, for both the 

control and modified bitumen to study the influence of the mixing and compaction 

temperature on the dynamic modulus. For each of the two binder grades, a total of four 

groups were prepared comprising the control and modified binders at mixing and 

compaction temperatures of 120°C and 140°C, making a total of eight groups. Three 

specimens were made for each of the eight test groups (24 specimens in total). Specimens 
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were compacted using a Superpave gyratory compactor according to AASHTO T342. 

The specimen air void requirement was 7% ± 0.5%. 

For FTIR-ATR testing a Bruker Tensor 37, Figure 2.1 (a), was used with an 

attenuated total reflection device shaped like a boat as shown below in Figure 2.1 (b). 

The ATR crystal is made out of germanium. The following settings were used for testing; 

resolution – 2cm-1, sample scan time – 16 scans, saved data from 4000 to 855 cm-1, 

scanner – 5kHz, aperture setting – 6mm, laser wavelength – 15800.36, and phase 

resolution – 32. There were three steps in specimen preparation; 1) specimens were 

prepared by pouring heated binder into 8mm DSR molds,  2) 8mm specimens placed into 

the boat and mixed with toluene, 3) boat placed in oven to evaporate toluene at 60°C for 

5 minutes. Toluene was added to help dissolve the binder to better spread over the ATR 

crystal. Cleaning was done with toluene, q-tips and cotton swabs. The ATR boat device 

was used because of contamination concerns with toluene getting on the mirrors 

underneath the crystal. 

Figure 2.1. FTIR-ATR (a) FTIR – Bruker Tensor 37, and (b) ATR boat device 
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2.3 Results and Discussion 

2.3.1 Binder testing 

The control and modified binders were tested according to AASHTO T315 in 

order to determine their critical high temperature.  The critical high temperature is 

determined from both unaged and RTFO aged specimens at G*/sin>1 kPa and 

G*/sin>2.2 kPa, respectively. The critical low temperature was determined using PAV 

aged specimens according to AASHTO T313. The results of both the critical high and 

low temperatures, along with the performance grade (PG), are shown in Table 2.1. The 

PG of the modified binder indicates a considerable change from the control binders for 

both binder grades; PG 64-28 and PG 58-28. A drop in the critical high temperature 

accompanied by a notable reduction in the critical low temperature was characteristic of 

the modified binders in comparison to the control binders. For both binder grades, the 

high temperature grade decreased by 18oC whereas the low temperature grade decreased 

by 6oC. A decrease in the high temperature grade denotes more susceptibility to rutting 

while a decrease in the low temperature grade marks more resistance to low-temperature 

cracking. 
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Table 2.1. Properties of control and modified binders 

Binder 
PG 58-28  

Control 

PG 58-28  

Modified 

PG 64-28 

Control 

PG 64-28 

Modified 

Unaged (High Temp.) 60.0 45.1 67.1 51.5 

RTFO (High Temp.) 62.5 46.7 66.5 52.5 

PAV (Low Temp.) -29.9 -36.3 -29.0 -36.9 

Performed Grade (PG) PG58-28 PG40-34 PG64-28 PG46-34 

Viscosity (Pa*s) at 135oC 0.329 0.188 0.718 0.381 

Viscosity (Pa*s) at 150oC 0.172 0.143 0.385 0.250 

Viscosity (Pa*s) at 165oC 0.107 0.125 0.230 0.193 

Viscosity temperature susceptibility 

(VTS) 
-3.04 -1.14 -2.69 -1.71 

Mass loss (%) 0.82 0.99 1.01 1.00 

 

To further study the effect of modification, the rutting parameter G*/sin obtained 

using DSR measurements at a frequency of 10 rad/s was plotted against temperature as 

shown in Figure 2.2. It is obvious that the addition of the soybean additive caused a 

decrease in the rutting parameter signaling an increase in rutting susceptibility. This was 

true for both binder grades.  

A similar plot, as Figure 2.2, was drawn to examine the fatigue parameter G*sin 

as shown in Figure 2.3. According to Superpave criteria, the critical intermediate 

temperature is reached when the value G*sin is equal to 5 MPa. A notable decrease in 

the lower critical intermediate temperatures occurs with modification which means that 

modified binders are more resistant to low temperature cracking than the control binders. 

The modified PAV aged PG 64-28 binder showed a better improvement in low 

temperature resistance compared to the PAV aged PG 58-28 binder. The effect of the 

soybean additive was more pronounced in the case of the PG 64-28 binder compared to 

the PG 58-28 binder. This dependency of performance on the binder grade was only true 
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for thermal cracking, e.g. low temperature performance, whereas rutting resistance, e.g. 

high temperature performance, did not show such notable dependency.  

 

Figure 2.2. Variation of G*/sinδ parameter with temperature 

 

Figure 2.3. Variation of G*sin parameter with temperature 
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2.3.2 Viscosity-temperature susceptibility 

The rate of change of the consistency of asphalt binder with temperature 

determines its temperature susceptibility. Binders with high temperature susceptibility 

exhibit very low viscosity at high temperatures leading to mixing and compaction 

problems. Additionally, such binders become very stiff at low temperatures and thus 

prone to low temperature cracking. For those reasons, high temperature susceptibility is 

considered to be problematic. To assess the temperature susceptibility, the viscosity 

temperature susceptibility parameter (VTS) has been used by many researchers due to its 

simple formulation (Raouf and Williams 2010) for formulating binders. Other parameters 

such as the penetration index (PI) and penetration viscosity number (PVN) have also 

been reported as good indicators of temperature susceptibility (Zaumanis et al. 2013). 

VTS is defined as the slope of the least-square best fit line between log-log viscosity and 

log temperature according to Equation 2.1: 

𝑽𝑻𝑺 =
𝒍𝒐𝒈[𝒍𝒐𝒈⁡(𝜼𝟏)]−𝒍𝒐𝒈[𝒍𝒐𝒈⁡(𝜼𝟐)]

𝒍𝒐𝒈(𝑻𝟐)−𝒍𝒐𝒈(𝑻𝟏)
                [2.1] 

where 𝑻𝟏and 𝑻𝟐 are temperatures of bitumen in Rankine at known points and 𝜼𝟏and 𝜼𝟐 

are the corresponding viscosities in cp. The measured VTS values for more than 50 

commonly used binders in the United States during the 1960’s ranged between 3.36 and 

3.98 (Puzinauskas 1967; Rasmussen et al. 2002). Figure 2.4 shows the viscosity versus 

temperature for both PG 64-28 and PG 58-28 control and modified binders. For both 

control and modified binders, the relationship between log temperature and log-log 

viscosity proved to be of a linear form as expressed by Equation 2.1. It is obvious that the 

viscosity decreases with modification for both binders. It is also interesting to note that the 

decrease in viscosity is more pronounced at lower temperatures. The use of modified binder 
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would allow for lower mixing and compaction temperatures compared to the control 

binder. The VTS values calculated from Equation 2.1 are given in Table 2.1. The modified 

binders demonstrated a considerably lower temperature susceptibility indicating much less 

change in viscosity with temperature, compared to the control binders.  

 

Figure 2.4. Relationship between viscosity and temperature 

2.3.3 Dynamic modulus 

The dynamic modulus is an important parameter which indicates the stiffness of 

asphalt concrete mixtures under dynamic loading. Dynamic modulus testing is performed 

over a range of temperatures and frequencies which simulates different environmental 

conditions and traffic loading. The work done under NCHRP Project 1-37A provided the 

basis for the development of the AASHTO Mechanistic-Empirical Pavement Design 

Guide for New and Rehabilitated Pavement structures which uses dynamic modulus, E*, 

of hot mix asphalt as a key input parameter for all three hierarchal levels of design 
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(NCHRP 2004). For level 1, E* is determined experimentally, whereas in both levels 2 

and 3, the E* values are determined using the Witczak predictive equation. The E* test 

was introduced as a preferred Simple Performance Test (SPT), under NCHRP Project 9-

19, and incorporated in the Superpave mix design procedure (Witczak et al. 2002). The 

dynamic modulus E* forms a key input parameter in AASHTOWare Pavement ME 

Design (AASHTO 2016). 

The test setup shown in Figure 2.5 was based on the work done by Witczak 

(Witczak 2005). A compressive haversine load was applied with a frequency ranging 

from 25 to 0.01 Hz at different temperatures. The specimens prepared using PG 64-28 

were tested at temperatures of 4oC, 21oC, and 37oC, whereas those prepared with PG 58-

28 were tested at temperatures of -4oC, 4oC, 21oC and 28oC. The specimens made using 

PG 58-28 binder were too soft at temperatures above 28oC, and attempts to test them at a 

higher temperature were met with failure as the mounted brackets slipped off the face of 

the specimens while testing.  The specimens were tested under the conditions of 

unconfined pressure and the strain was kept between 50 and 150 micro-strain to ensure 

that deformations are within the linear viscoelastic range of the material. To record the 

deformation, three LVDTs were placed at equal spacing around the circumference of the 

specimen and the average of all three readings was reported. The LVDTs were positioned 

on mounted brackets that were held in place using buttons glued to the face of the 

specimens.      
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Figure 2.5. Test set-up for dynamic modulus 

The dynamic modulus is expressed as the ratio between the maximum stress (𝜎𝑜) 

and maximum recoverable axial strain (𝜀𝑜) as outlined in (Witczak 2005)  

A phase angle (φ) is defined which is used to evaluate the elasticity of the asphalt 

mix, where φ=0 denotes a purely elastic mix and φ=90° indicates a purely viscous mix. 

The construction of “master curves” using dynamic modulus data provides a very 

efficient way to characterize asphalt mixtures. The concept of time-temperature 

superposition is utilized to calculate asphalt stiffness across different temperatures and 

frequencies. Time-temperature superposition is based on the assumption that asphalt 

materials are rheologically simple and linearly viscoelastic at low strain measurements. 

Shift factors are used where the dynamic modulus data are shifted horizontally to plot a 

master curve at a selected reference temperature. Master curves typically follow a 

sigmoidal curve. A horizontal asymptote at low temperatures indicates a glassy modulus 

due to physical hardening of the asphalt. At intermediate and high temperatures, asphalt 
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behaves as a Newtonian fluid with a constant slope indicating constant viscosity 

irrespective of the shear rate.  

Shift factors (aT) were calculated as the ratio between the reduced frequency at the 

reference temperature (𝜔𝑟)and the frequency at the given temperature(𝜔), expressed as: 

a𝑇 =
𝜔𝑟

𝜔
                                                   [2.2] 

A second-order polynomial relation expresses shift factors as a function of 

temperature, according to the following: 

log(𝑎𝑇) = 𝑎1𝑇
2 + 𝑎2𝑇 + 𝑎3               [2.3] 

where 𝑎1, 𝑎2𝑎𝑛𝑑⁡𝑎3 are regression coefficients.  

The sigmoidal model used to describe the dynamic modulus of asphalt mixtures is 

expressed as, 

𝑙𝑜𝑔|𝐸∗| = 𝛿 +
𝛼

(1+𝑒𝛽+𝛾(log(𝑡𝑟)))
              [2.4] 

where 𝑡𝑟 is the reduced time of loading at the selected reference temperature, 𝛿 is the 

minimum value of E*, 𝛿 + 𝛼 is the maximum value of E*, and the parameters 𝛽 and 𝛾 

define the shape of the sigmoidal function.  

The master curves for the mixtures prepared using PG 64-28 and PG 58-28 

binders, at a reference temperature of 21oC, are shown in Figures 2.6 and 2.7, 

respectively. For all mixtures, it is clear that the addition of the soybean additive caused a 

reduction in the dynamic modulus at all frequencies. However, the degree in reduction of 

the dynamic modulus was not constant along the entire range of the master curve, with 

more reduction taking place at lower frequencies, i.e. higher temperatures. The dynamic 
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modulus values for both PG 64-28 and PG 58-28 control mixtures did not seem to vary 

significantly with changes in the mixing and compaction temperatures. The performance 

of PG 64-28 modified mixture, however, was noted to depend on the mixing and 

compaction temperature, with more reduction in dynamic modulus occurring at a mixing 

and compaction temperature of 120oC compared to 140oC. The effect of the mixing and 

compaction temperature was not as clear in the case of the mixtures using the modified 

PG 58-28. At high test temperatures, the effect of the mixing and compaction temperature 

on the dynamic modulus could not be assessed due to the wide variability in the results. It 

was also difficult, using the master curves alone, to compare between the efficiency of 

the soybean additive for the PG 64-28 and PG 58-28 mixtures. Based on the preceding 

master curve discussion, it was clear that despite the usefulness of the master curves in 

characterizing the control and modified mixtures, a more in-depth analysis is required to 

further study the performance of the soybean additive. The statistical analysis that 

follows will investigate the significance of each of the test parameters along with their 

interactions.  
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Figure 2.6. Master curve for mixes prepared with PG 64-28 

 

Figure 2.7. Master curves for mixes prepared with PG 58-28 
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2.3.4 Statistical analysis 

The log-log scale used in the plotting of master curves makes it difficult to 

identify subtle differences between various specimen groups. To provide a detailed 

analysis and to quantify the differences between dynamic modulus values, a complex 

statistical analysis using analysis of variance (ANOVA) was performed. The analysis 

conducted involved more than a simple ANOVA analysis in that it utilized the concept of 

split- plot repeated measures (SPRM). The dynamic modulus test, in itself, is a repeated 

measure test since the same specimen is tested under a range of different temperatures 

and frequencies. A recent study has concluded that using SPRM isolates statistical errors 

which arises from reusing the same specimen for repeated testing (Buss et al. 2017). Such 

a statistical technique provides a clear advantage over common simplified statistical 

analyses that involve comparing data at a fixed temperature or frequency only. Using 

SPRM provides a full analysis that takes into account the interaction between the 

different experimental factors and isolates the error due to the variability of specimens 

that are treated the same.  

The design of SPRM experiments involves dividing the experimental factors into 

whole plot and split plot factors. For the purpose of this analysis, the whole plot factors 

were identified as the main factors of interest, namely modification, mix temperature, and 

performance grade. Each of these whole plot factors comprised two levels; the 

modification factor included control and modified groups, the mix and compaction 

temperature factor included 120oC and 140oC, and the performance grade factor included 

PG 64-28 and PG 58-28. As for the split plot factors, these were identified as temperature 

and frequency, where the temperature factor included 4oC and 21oC, and the frequencies 
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used were 0.1, 1, 2, 5, 10, 20 and 25 Hz. Data from -4oC, 28oC and 37oC were excluded 

as they were not common between specimens made of the two performance grade 

binders.  The whole plot factors were combined at their different levels to create the 

whole plot groups, making a total of (2*2*2) 8 groups. Three specimens were tested at 

each group, for a total of 24 specimens. Each of the whole plot specimens were tested at 

the various test temperatures and frequencies.  

As part of the SPRM design, it was important to isolate the error due to the 

variability in making the specimens, which could be due to the natural variability of the 

materials being used, slight differences in air voids, aggregate structure and binder 

absorption. In doing so, the specimens were defined as a separate factor so that variations 

among specimens could be determined and factored out of the analysis. The variations in 

specimens that are treated the same will constitute the sum of squares error term.  

One of the fundamental assumptions for conducting an ANOVA analysis is that 

the variance between the specimen measurements within each group must be equal 

among all groups. To verify this assumption, a box-plot distribution of dynamic modulus 

values was plotted for the different test temperatures as shown in Figure 2.8. It was 

revealed that the variance in the dynamic modulus measurements was not the same for 

the different test temperatures, with the highest variance occurring at the lower test 

temperature. A log transformation of the dynamic modulus data proved to be very useful 

in providing a data set with roughly similar variances among different test temperatures, 

as shown in Figure 2.9.    

An open-access statistical software “R” is used for the analysis. A summary of the 

p-values for the whole plot and subplot factors along with their interactions are shown in 
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Tables 2.2 and 2.3. The p-values are used as an indicator of the statistical significance of 

a given factor or factor interaction. Factors or factor interactions with p-values at or 

below a chosen alpha value are considered statistically significant. An alpha value of 0.05 

represents 95% statistical difference at 95% confidence level. The factors or factor 

interactions with p-values below a chosen alpha value of 0.05 are highlighted.  

 

Figure 2.8. Box-plot distribution of the dynamic modulus with test temperature 
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Figure 2.9. Box-plot distribution of log dynamic modulus with test temperature 

Table 2.2. Summary of Whole Plot P-values for the ANOVA analysis  

Whole plot factors Df Sum Sq Mean Sq F value p-value 

PG 1 0.255 0.255 6.09 0.025251 

Modify 1 21.552 21.552 515.308 1.35E-13 

MixTemp 1 0.314 0.314 7.512 0.014506 

PG:Modify 1 0.746 0.746 17.833 0.000647 

PG:MixTemp 1 0.008 0.008 0.181 0.675909 

Modify:MixTemp 1 0.154 0.154 3.676 0.073221 

PG:Modify:MixTemp 1 0.039 0.039 0.935 0.347971 

Residuals 16 0.669 0.042   
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Table 2.3. Summary of Sub Plot P-values for the ANOVA analysis  

Sub plot factors Df Sum Sq Mean Sq F value p-value 

Temp 1 42.18 42.18 34218 <2E-16 

Freq 8 32.77 4.1 3322.6 <2E-16 

PG:Temp 1 0.23 0.23 185.16 <2E-16 

Modify:Temp 1 0.28 0.28 227.63 <2E-16 

MixTemp:Temp 1 0.02 0.02 16.342 6.89E-05 

PG:Freq 8 0.13 0.02 13.625 <2E-16 

Modify:Freq 8 0.99 0.12 100.34 <2E-16 

MixTemp:Freq 8 0.01 0 0.764 0.63451 

Temp:Freq 8 1.58 0.2 159.81 <2E-16 

PG:Modify:Temp 1 0.12 0.12 95.998 <2E-16 

PG:MixTemp:Temp 1 0.02 0.02 13.387 0.0003 

Modify:MixTemp:Temp 1 0.01 0.01 4.169 0.04214 

PG:Modify:Freq 8 0.07 0.01 7.335 7.85E-09 

PG:MixTemp:Freq 8 0.01 0 1.143 0.3348 

Modify:MixTemp:Freq 8 0 0 0.447 0.89165 

PG:Temp:Freq 8 0.03 0 2.606 0.00923 

Modify:Temp:Freq 8 0.08 0.01 8.531 2.31E-10 

MixTemp:Temp:Freq 8 0 0 0.46 0.88377 

PG:Modify:MixTemp:Temp 1 0 0 0.005 0.94543 

PG:Modify:MixTemp:Freq 8 0 0 0.237 0.98354 

PG:Modify:Temp:Freq 8 0.01 0 1.415 0.18995 

PG:MixTemp:Temp:Freq 8 0.01 0 0.896 0.52048 

Modify:MixTemp:Temp:Freq 8 0 0 0.431 0.90222 

PG:Modify:MixTemp:Temp:Freq 8 0 0 0.409 0.91473 

Residuals 272 0.34 0   
 

According to Table 2.2, the type of binder (PG), mixing and compaction 

temperature and the modification were all significant factors in determining the dynamic 

modulus. More precisely, differences in dynamic modulus values between groups of 

specimens using, for instance, different binder grades were statistically significant at a 

95% confidence level. This was also true between groups of specimens made at different 

mixing temperatures, as well as between groups of specimens made with control and 

modified binders. In addition to the significance of the three whole plot main factors, the 

interaction between the binder type (PG) and the modification factors was also shown to 

be significant. This essentially means that that the extent of the effect of modification on 
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the dynamic modulus is found to be significantly dependent on the binder grade. A plot 

of the mean of the log dynamic modulus, of the type shown in Figure 2.10, clearly 

demonstrates this finding where the lack of parallelism between the two lines is an 

indicator of the interaction between the two factors. From Figure 2.10, it can be seen that 

the drop in the mean of the log dynamic modulus as a result of modification was 

significantly larger in case of the PG 58-28 binder compared to the PG 64-28 binder. This 

finding leads one to believe that the efficiency of the soybean additive in reducing the 

dynamic modulus is dependent to a large extent on the binder grade and the binder’s 

composition.   

 

Figure 2.10. Interaction plot for PG and modification 

According to Table 2.3, both the subplot factors, namely temperature and 

frequency were also found to be statistically significant, along with their two-way 

interaction with the whole plot factors. The analysis also revealed a number of three-way 

interactions between factors. An example of a three-way interaction is the interaction 
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between PG, modification and temperature. This interaction is best explained through 

Figure 2.11 which plots the mean log dynamic modulus for both the control and modified 

binders at both test temperatures. It is shown that the degree of interaction between PG 

and modification varies with test temperature. More interaction is taking place between 

the two factors at the higher test temperature of 21oC. This can be explained in terms of 

the PG of the two binders. Both binders have the same low temperature grade, which 

explains their roughly similar response to modification at low temperature whereas their 

response to modification deviates notably at high temperature due to the fact that their 

high temperature grades are different. This finding further illustrates that the degree in 

reduction of the dynamic modulus is binder grade and composition dependent, where the 

drop in dynamic modulus at both low and high temperature ranges is related to the low 

and high temperature binder grades, respectively.   

 

Figure 2.11. A plot of the three-way interaction between PG, modification and temperature 
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The analysis also revealed an interesting three-way significant interaction 

between mixing and compaction temperature, test temperature and modification. Figure 

2.12 illustrates the interdependence of these three factors, where the lack of parallelism at 

test temperature 4oC signifies more interaction between the modification and the mixing 

and compaction temperature compared to 21oC test temperature. When tested at 4oC, the 

drop in dynamic modulus of the specimens prepared at a mixing and compaction 

temperature of 120oC was significantly larger than those specimens prepared at 140oC. 

However, at the 21oC test temperature, the effect of mixing and compaction temperature 

on the change in dynamic modulus upon modification was not as evident. This finding 

verifies the results from the master curve analysis where it was noted that the effect of the 

mixing and compaction temperature was insignificant at the higher test temperature.  

 

Figure 2.12. A plot of the three-way interaction between mixing temperature, modification and test 

temperature 
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2.3.5 FTIR-ATR 

FTIR is used extensively to identify functional groups present in asphalt binders. 

Absorption/transmission peaks in an IR spectrum mark different vibrational frequencies 

of atomic bonds, which represent different functional groups. A study of the functional 

groups can reveal some useful information about aging of bitumen. An increase in 

carbonyls and sulfoxides chemical functional groups has been associated with an increase 

in viscosity and was noted to take place with aging (Herrington et al. 1994; Petersen and 

Glaser 2011).  

FTIR-ATR uses attenuation of light internally reflected on a non-absorbing 

surface. The specimen is directly placed on the reflecting surface and absorbs the 

attenuated light, which penetrates a depth of only a few micrometers. The use of FTIR-

ATR increases the sensitivity of measurement because multiple reflections lead to 

increased absorbance. 

FTIR has been used to characterize aging in bitumens using the sulfoxides and 

carbonyls functional groups. The peaks at wavenumbers 1030 cm-1 and ≈1740 cm-1 

represent the sulfoxides and carbonyls, respectively. Due to the differences in thickness 

between samples, the absolute peak values cannot be used as a measure of aging 

evolution. The sulfoxide and carbonyl peak values are however normalized against 

reference aliphatic functional groups, which do not significantly change with aging. The 

peaks at wavenumbers ≈1377 cm-1 and ≈1466 cm-1 representing methyl (CH3) and ethyl 

(CH2) groups, respectively, are usually taken as reference. Carbonyl and sulfoxides 

indices are calculated as follows: 

𝐼𝐶𝑂 =
𝑉𝐶𝑂

𝑉𝑟
⁄                                                   [2.5] 
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𝐼𝑆𝑂 =
𝑉𝑆𝑂

𝑉𝑟
⁄                                                    [2.6] 

where, 𝐼𝐶𝑂: Carbonyl index,⁡𝐼𝑆𝑂: Sulfoxide index, 𝑉𝐶𝑂: Carbonyl peak value (Height or 

area), 𝑉𝑆𝑂: Sulfoxide peak value (Height or area), 𝑉𝑟: Ethyl + Methyl peak values.  

Calculating the peak areas was shown to be a good indicator of the aging indices 

(Marsac et al. 2014). In this study, the carbonyl peak area was calculated between 

wavenumbers 1753 cm-1 and 1660 cm-1, the sulfoxide peak area between wavenumbers 

1047 cm-1 and 966 cm-1, and the ethyl and methyl peak areas between wavenumbers 1525 

cm-1 and 1350 cm-1, as outlined in the French MLPC Method No. 69 (Mouillet et al. 

2009).  

Figures 2.13 and 2.14 show the absorption FTIR spectra for the unaged, RTFO, 

and PAV control PG58-28 and PG64-28 binders. All spectra show distinct peaks that are 

typical of asphalt binders. An interpretation of the important peaks that appear in the 

spectra are provided in Table 2.4. 
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Figure 2.13. FTIR spectrum for the control PG58-28 

 

Figure 2.14. FTIR spectrum for the control PG64-28 
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Table 2.4. Interpretation of functional groups appearing in the FTIR spectra  

Functional group Absorption wavenumbers (cm-1) 

Carbonyls 1741 (stretch) 

Aromatic and Heteroaromatic rings 1604 (ring stretch)  

Sulfoxides 1030 (stretch) 

Methyl (aliphatic) 2955-2871 (stretch), 1456-1377 (bend) 

Ethyl (aliphatic) 2924-2853 (stretch), 1496 (bend) 

 

The FTIR spectra for the modified PG58-28 and modified PG64-28 are shown in 

Figures 2.15 and 2.16, respectively. Apart from the peaks in Table 2.4, an additional peak 

at 1155 cm-1 appears in the spectra for the modified binders, which is attributed to the 

ester moiety that is part of the soybean additive. It is also observed that the carbonyl peak 

increases significantly with the addition of the soybean additive owing to the ester bond 

that is present in the soybean additive structure.  

 

Figure 2.15. FTIR spectrum for the modified PG58-28 
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Figure 2.16. FTIR spectrum for the modified PG64-28 

The carbonyl and sulfoxide indices were calculated according to Equations 2.5 

and 2.6, using the peak areas as detailed above. A plot of both indices is provided in 

Figures 2.17 and 2.18. As expected, the carbonyl index is shown to increase with aging. 

The evolution rate of the carbonyl index was comparable for both control and modified 

binders which indicate that the addition of the soybean additive did not influence the 

aging behavior of the binder. The sulfoxide index showed a similar increase with aging 

for the PG58-28 binder, however a drop in the sulfoxide index was noted at later stages 

of aging for the PG64-28 binder. The drop was noted for both control and modified 

binders. Such drop in the sulfoxides index is not uncommon as decomposition of 

sulfoxides under severe aging conditions have been previously reported (Herrington 

1995; Ouyang et al. 2006). 
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Figure 2.17. The change in carbonyl index with aging 

 

Figure 2.18. The change in sulfoxide index with aging 

2.4 Summary and Conclusions 

In this paper, a soybean-derived additive was investigated as a potential 

rejuvenator. The effect of adding a 0.75% rejuvenator by weight of binder on the 
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rheological properties of both a PG58-28 and a PG64-28 was studied. The rejuvenator 

resulted in an improvement in the low temperature performance of both asphalt binders. 

The performance efficiency of the rejuvenator was shown to be dependent on the 

performance grade (PG) of the asphalt binder. In this case, the enhancement in fatigue 

resistance upon addition of the rejuvenator was more for the PG64-28 compared to the 

PG58-28. The use of rejuvenator also led to an increase in the rutting susceptibility, 

which could be controlled by careful selection of the rejuvenator content.  

Rotational viscometer testing revealed that the soybean modified binders had 

much lower viscosity values as compared to the control binders at all test temperatures. 

The reduction in viscosity was greater at low temperatures, which promotes applying 

lower mixing temperatures when using the modified asphalt binders. It was also apparent 

that the modified binders had less viscosity-temperature susceptibility compared to the 

control binders.   

Asphalt mixtures prepared using the modified binders at two different mixing and 

compaction temperatures, namely 120oC and 140oC, were tested for dynamic modulus, 

and compared against mixtures made with control binders. The constructed master curves 

showed a reduction in dynamic modulus with the soybean modification at both mixing 

temperatures. The effect on dynamic modulus at low test temperatures was however more 

prominent at the mixing temperature of 120oC, in particular for the PG64-28 mixtures.  

A comprehensive statistical analysis was performed to further analyze the effect 

of the different factors on the dynamic modulus. It was shown that the performance grade 

(PG), the mixing and compaction temperature, and modification were significant 

parameters in determining the dynamic modulus. The statistical analysis also verified that 
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the performance of the soybean additive is dependent on the asphalt binder. Furthermore, 

it was revealed that the effect of the mixing and compaction temperature was significant 

at low test temperatures only, but not at high test temperatures. 

FTIR-ATR was used to characterize aging in both the control and modified 

asphalt binders. It was noted that the carbonyl and sulfoxide functional groups were 

shown to increase with aging. Studying the evolution of these two functional groups, it 

was concluded that the modification did not cause any significant influence on the aging 

behavior of the asphalt binders.  

In conclusion, the soybean-derived additive has proven to be very efficient in 

modifying the rheological properties of asphalt binders and the dynamic modulus of 

asphalt mixtures. It is remarkable to note that such effect of the soybean additive was 

achieved at a very small dosage of 0.75%, compared to dosages that can exceed 12% 

with commercially available rejuvenators. An even lower dosage can be used to reduce 

the negative impact of lowering rutting resistance, while still improving the low 

temperature fatigue performance considerably.  
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CHAPTER 3. PRELIMINARY EXAMINATION OF SOYBEAN OIL DERIVED 

MATERIAL AS A POTENTIAL REJUVENATOR THROUGH SUPERPAVE 

CRITERIA AND ASPHALT BITUMEN RHEOLOGY 

Modified from a paper published in Construction and Building Materials 

Mohamed Elkashefa*, Joseph Podolskya, R. Christopher Williamsa and Eric Cochranb 

Abstract 

The increased use of recycled asphalt materials in bituminous mixtures has led to 

increasing interest in rejuvenators. Rejuvenators are primarily used to restore the 

rheological properties of aged bitumens to their unaged state. In this work, the effect of 

adding a soybean-derived biomaterial at a 0.75% by mass of bitumen to a polymer 

modified PG64-28 and a neat PG58-28 is studied. Dynamic Shear Rheometer, Bending 

Beam Rheometer, and Rotational Viscometer are used to characterize the bitumens 

rheology. The effect of aging on the longevity of the soybean additive is examined. It was 

revealed that this material is a viable candidate as a rejuvenator. At such low dosage, it 

had a remarkable effect on the fatigue and low temperature properties of both bitumens. 

It also led to a notable decrease in the complex shear modulus accompanied by an 

increase in the phase angle, which is essentially reversing the effect of aging. 

3.1 Introduction 

In the past years, the interest in using reclaimed asphalt pavement (RAP) has been 

growing rapidly. This rise in interest is motivated by a number of reasons including a 

desire to reduce cost, preserve the environment, and conserve energy. With the increasing 

bitumen prices and dwindling supply of higher quality virgin aggregate, there is a 

compelling need to use larger amount of less expensive RAP to replace the more 
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expensive virgin bitumen and aggregates. Despite the need to use higher proportions of 

RAP, a recent survey, conducted on the use of recycled materials in asphalt pavements, 

revealed that the average percentage of RAP in the US has only increased from 15% in 

2009 to 20% in 2014 (Hansen and Copeland 2015). Such reluctance to use more RAP in 

asphalt pavements stem from the fact that the aged RAP bitumen has undesirable high 

stiffness and low creep rate, which makes it susceptible to low temperature thermal 

cracking (Yu et al. 2014). Accordingly, using higher percentages of RAP produces very 

stiff mixes which are difficult to field compact, and can result in unexpected premature 

failure (Copeland 2011).  

Several techniques are being implemented to allow for the use of RAP in asphalt 

mixes, including mixing with a softer virgin bitumen, using higher asphalt content 

mixtures, and using warm-mix technology to minimize the short-term aging effect and to 

lower asphalt absorption (Im et al. 2016). These techniques are suitable for lower RAP 

content mixtures, however they failed to allow for the use of higher RAP content. For 

instance, the use of softer virgin bitumen would compensate the aging of the RAP 

bitumen for low RAP content mixes but its effect on high RAP content mixes would be 

insignificant (West et al. 2013). In this regard, rejuvenators have shown to be a very 

attractive alternative in that they can lead to higher RAP content. Rejuvenators have 

proven to be very efficient in restoring the aged bitumens to their original state. With the 

increase in popularity of hot-in-place pavement recycling (HIR), rejuvenators are 

becoming even more important. In HIR, old pavements are heated and milled in place 

before being mixed with virgin aggregates, virgin bitumen, and a rejuvenator.   
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Asphalt is composed of four distinct chemical fractions, namely asphaltenes, 

resins, aromatics, and saturates. Resins, aromatics, and saturates are collectively referred 

to as maltenes. The high molecular weight asphaltenes forms a colloidal suspension in 

low molecular weight maltenes. The asphaltene content has a great influence on asphalt 

viscosity. In a recent study, increasing the asphaltene content by addition of propane 

deasphaltene tar (PDA) resulted in a noticeable increase in the penetration index, a 

similar effect was also noted with aging (Firoozifar et al. 2011). Apart from the 

asphaltene content, the resins also plays an important role since they act as dispersing 

agents to the asphaltenes. The ratio of resins to asphaltenes is an important parameter that 

controls the degree of dispersion of asphaltenes and accordingly the asphalt viscosity 

(Bitumen 1995).  

Rejuvenators are chemical or bio-derived additives which typically contain a high 

proportion of maltenes, which serves to replenish the maltene content in the aged bitumen 

that has been lost as a result of oxidation (Copeland 2011). The addition of maltenes 

helps rebalance the chemical composition of the aged bitumen, which contain high 

percentage of asphaltenes. Rejuvenators are added during mixing and are believed to 

diffuse within the aged bitumen imparting softening characteristics. The rejuvenator 

initially coat the outside of the RAP aggregates before they gradually seep into the aged 

bitumen layer until they diffuse through the film thickness (Carpenter and Wolosick 

1980).    

A number of studies have investigated the performance of rejuvenated bitumens 

and resulting asphalt mixtures. The main focus of these studies was to investigate the 

effect of rejuvenators on the stiffness of the aged bitumen and the low temperature 
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cracking resistance of the produced asphalt mixtures (Elseifi et al. 2011; Hajj et al. 2013; 

Zaumanis et al. 2013). It has been concluded that rejuvenators successfully reduce the 

aged bitumen stiffness and notably improve the low temperature cracking resistance of 

the resulting mixture (Mogawer et al. 2013; Tran et al. 2012). The selection of the 

rejuvenator dosage was found to have a great influence on the effectiveness of the 

treatment (Shen et al. 2007). It was suggested that blending charts could be used to obtain 

an optimum dosage that meets the requirements of the bitumen specifications. 

Determining the proper dose is crucial since a higher dosage may cause undesirable 

excessive softening of the bitumen, which may lead to performance problems such as 

rutting. The rejuvenated bitumen properties can be determined through extraction of the 

aged bitumen, blending with the rejuvenator, and subsequent testing. Such technique, 

however, assumes perfect blending between the rejuvenator and the aged bitumen, which 

does not necessarily reflect actual conditions. During actual mixing, the rejuvenator 

might not diffuse fully through the aged asphalt film thickness.  

The performance of mixes which involve RAP is controlled to a large extent by 

the degree of blending between the RAP bitumen and the virgin bitumen in addition to 

the effective percentage of RAP bitumen which contribute towards the total asphalt 

content(Huang et al. 2005). Through the use of rejuvenators, the RAP bitumen becomes 

less stiff and can thus blend more easily with the virgin bitumen.  

Aged RAP bitumens are characterized as having a high relative viscosity. The 

high viscosity can lead to poor mixing and compaction, hence the study of the 

rejuvenator’s effect in reducing the viscosity is very important. Achieving low viscosity 

ensures that the bitumen has sufficient flow to properly blend with the virgin bitumen and 



www.manaraa.com

49 

 

to uniformly coat both virgin and RAP aggregates. It is equally important for the 

rejuvenator to be able to lower the RAP bitumen viscosity to acceptable levels without 

the need for high dosages. High dosages of rejuvenators could lead to potential rutting, 

stripping and mix instability problems (Zaumanis et al. 2013). The study of the 

temperature-viscosity dependence of the rejuvenated aged bitumen is also important 

because high mixing temperatures could damage the bitumen so it is advantageous to 

have an effective rejuvenator which would promote low mixing temperatures at a low 

dosage.  

Rejuvenators vary greatly according to their chemical composition and origin. 

Numerous research efforts have been directed to assessing the performance of 

commercially available rejuvenators, as well as proposing new materials to act as 

rejuvenators. Materials derived from distilled tall oil, petroleum based aromatic extract, 

and organic oil have been successfully applied as rejuvenators (Zaumanis et al. 2014). 

Organic oil bio-derived rejuvenators have been presented as a more safe alternative to the 

carcinogenic aromatic oil rejuvenators (Hajj et al. 2013). Organic oils have been 

successfully used by the Florida Department of Transportation (FDOT) for mixes that 

contain 40% RAP. Two trial sections were constructed on I-95 using 0.75% of the 

organic oil by weight of RAP in 2009. Other DOTs have reported using organic oil at 

varying RAP contents such as the Texas DOT with 35% RAP and 5% RAS, and the New 

York City DOT with 20% RAP (Hajj et al. 2013). A study conducted by Zaumanis et al. 

(Zaumanis et al. 2014) investigated the performance of six different rejuvenators 

including waste engine oil, distilled tall oil, waste vegetable oil, waste vegetable grease, 

organic oil, and aromatic extract. The study was performed on mixes using 100% RAP, 



www.manaraa.com

50 

 

with a 12% rejuvenator dosage by mass of RAP bitumen. It was shown that organic-

based rejuvenators were more efficient in lowering the low temperature performance 

grade (PG) of the rejuvenated bitumen compared to petroleum-based rejuvenators. It was 

also shown that none of the rejuvenators significantly reduced the high temperature PG, 

which indicates that with the use of an appropriate rejuvenator dosage, rutting should not 

be a concern. All of the six rejuvenators seemed to work efficiently at this dosage except 

for waste engine oil which did not meet the low temperature grade and resulted in high 

mass loss, which indicates volatility and increased aging susceptibility.  

A number of studies have addressed the issue of durability of rejuvenated asphalt. 

In the work done by Shen et al. (Shen et al. 2007), mixtures containing 48% RAP and 

12.5% rejuvenator, by mass of RAP bitumen, were evaluated for rutting in an asphalt 

pavement analyzer (APA) and for moisture sensitivity using indirect tensile strength 

(ITS) tests. It was shown that the performance of the rejuvenated mixes was better than 

the control RAP mixes prepared with a softer virgin bitumen. A recent study investigated 

the long-term aging behavior of rejuvenated bitumen prepared using five different 

rejuvenators (Mohammadafzali et al. 2015). It was revealed that the long-term aging 

effect differed greatly among rejuvenators. Two of the rejuvenators, namely aromatic 

extract and a water-based emulsion from naphthenic crude, caused slowing down of the 

aging rate compared to virgin bitumens while the other three, namely petroleum neutral 

distillate, oil-based bio-rejuvenator and a polyol ester pine, accelerated aging. Study of 

long-term cracking and fatigue resistance of rejuvenated mixes was performed on full-

depth asphalt pavement specimens (Mohammadafzali et al. 2015). The long-term aging 

was simulated using an Accelerated Pavement Weathering System (APWS). APWS 
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simulates real weather conditions including rain, sunshine and temperature fluctuations. 

The Texas Overlay Test, as described in TEX-248-F (Designation 2009), was performed 

to assess fatigue and cracking resistance for specimens subjected to 0, 1000, and 3000 

hours of APWS aging. The results indicated that the rejuvenated mixes showed better 

fatigue and reflective cracking resistance compared to the virgin mixes. It was shown that 

rejuvenated asphalt mixtures showed better performance in terms of fatigue and reflective 

cracking compared to virgin asphalt mixtures, even after 3000 hours of APWS aging 

(Mohammadafzali et al. 2015). 

The effectiveness of the rejuvenator is also related to the bitumen’s chemical 

composition. A specific rejuvenator could work effectively for one bitumen but not 

another. Two bitumens from different crude sources, namely AAD (PG 58–28) and ABD 

(PG 58–10) from the Federal Highway Administration’s Material Reference Library, 

were rejuvenated using aromatic extract rejuvenators (Yu et al. 2014). The effect of 

rejuvenation on the low temperature grade was more pronounced on the ABD bitumen 

compared to the AAD bitumen, which was attributed to a better chemical interaction 

between the rejuvenator and the bitumen.   

The changes in the chemical composition of the bitumen as a result of aging and 

rejuvenation can be examined using SARA fractionation. PAV aging of a virgin bitumen, 

followed by SARA fractionation, revealed conversion of aromatics to asphaltenes with no 

significant change in resins or saturates (Yu et al. 2014). Addition of aromatic extract 

rejuvenator caused an increase in the content of saturates and aromatics accompanied by 

a reduction in the asphaltenes proportion. The chemical composition of the rejuvenated 

bitumen did not exactly mirror that of the virgin bitumen but the overall effect of the 
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rejuvenation process was to introduce chemical changes that helped restore the virgin 

bitumen properties. 

The United States produces about one third of the world soybean output (Iowa 

Soybean Association 2016).The State of Iowa is considered one of the big producers of 

soybean in the US, according to a recent report published by the Iowa Soybean 

Association. (Iowa Soybean Association 2016).This substantial production mainly is used 

in making soybean meal or soybean oil. Soybean meals are largely consumed by the 

livestock industry while most of the soybean oil is used in the production of biodiesel 

fuel. An estimated 20% of the soybean output is used to make biodiesel oil (Iowa 

Soybean Association 2016). The process of biodiesel oil production involves 

transesterification of the soybean oil in the presence of a catalyst(Ma and Hanna 1999). 

The abundancy of the soybean oil production in the US inspires the need to look for 

alternative applications other than biodiesel production. 

A number of previous studies have used soybean oil derived materials in asphalt. 

Soybean acidulated soapstock (SAS), which is considered a rich source of soybean fatty 

acids, was used as a fluxing agent at dosages from 1-3%(Seidel and Haddock 2014). 

There was a consistent decrease in the critical high temperature with the SAS 

modification. An enhancement in the low temperature was also observed.  Another recent 

study used soybean oil as a warm-mix asphalt (WMA) additive, with dosages from 1-3%. 

It was concluded that a reduction in the mixing and compaction temperature of 3.4oC 

was attained at a dosage of 1% (Portugal et al. 2017). 

This paper presents a soybean-derived rejuvenator that is capable of achieving 

significant changes in the binder rheology at low dosages. These rheological changes are 



www.manaraa.com

53 

 

sustained with aging. This addresses a major drawback of currently available rejuvenators 

that require high dosages. Having a rejuvenator that is effective at low dosages provides a 

very economically viable alternative. This is in addition to the fact that using higher 

percentages of rejuvenators poses concerns regarding durability and the extent of 

chemical and physical changes of the original binder(Zaumanis et al. 2013).  

3.2 Materials and Methods 

Two asphalt bitumen grades are used in this study, namely PG64-28 and PG58-

28. The PG64-28 bitumen is a polymer modified bitumen whereas the PG58-28 is a neat 

bitumen. The additive used will be referred to in a generic term as a soybean derived 

additive(Williams et al. 2016) . The control bitumens are modified by blending 0.75% of 

the additive by mass of the total bitumen blend using a shear mill at 140oC ±2oC and 

3000 rpm for one hour. The blends as well as the control bitumen were then subjected to 

different aging conditions, namely Rolling Thin Film Oven (RTFO), and Pressure Aging 

Vessel (PAV).  

To assess the high and low temperature performance of both the control and 

modified bitumens, Dynamic Shear Rheometer (DSR) and Bending Beam Rheometer 

(BBR) tests were conducted according to AASHTO T315 and AATHTO T313, 

respectively. Tests were done on unaged, RTFO aged, and PAV aged bitumens. Rolling 

Thin Film Oven (RTFO) aging was done according to ASTM D2872 at 163oC for 85 

minutes while PAV aging was performed on the RTFO aged bitumen according to 

ASTM D6521 for 20 hours at 100oC and 2.1 MPa pressure. The viscosity of the unaged 

control and unaged modified bitumens were measured using a rotational viscometer 

according to AASHTO T316.  
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To further investigate the effect of the soybean derived additive on the rheological 

properties of asphalt, a frequency sweep using a DSR was done on the unaged, RTFO 

aged, and PAV aged bitumens. The frequency sweep covered a range of frequencies 

extending from 0.6 to 100 rad/s at temperatures of 0, 10, 20, 30 and 40oC, using a 

controlled strain of 1%. An 8-mm diameter and 2-mm gap geometry was used for all 

samples. This agrees with widely accepted recommendations to use the 8-mm diameter 

geometry for temperatures up to 40oC(Alavi et al. 2015; Haghshenas 2016). For 

comparison reasons, the tests were repeated using a 25-mm diameter and 1-mm gap 

geometry for the unaged and RTFO aged samples. However, the 25-mm geometry 

resulted in erroneous high phase angles, possibly due to inaccuracies of torque 

measurements at low test temperatures. Hence, the results of the 25-mm diameter 

geometry were discarded and only the results from the 8-mm diameter geometry is shown 

here. Master curves were generated at a reference temperature of 20oC.  

For all of the above tests, replicates of three samples were measured at each 

testing condition and the average values are reported.   

3.3 Results and Discussion 

3.3.1 Master Curves 

The performance of asphalt bitumens can be characterized with the aid of “master 

curves” which are constructed using the time-temperature superposition principle. 

Asphalt is viewed as a linear viscoelastic material at low strains with a temperature-

dependent behavior. At high temperatures, asphalt behaves as a Newtonian fluid where 

the viscosity is constant regardless of the shear rate whereas at low temperatures a 

limiting modulus, referred to as glass modulus, is reached due to physical hardening 
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effects. The time-temperature superposition allows calculation of asphalt stiffness over a 

wide range of temperatures and frequencies, using limited range measurements. Shift 

factors are calculated and used to shift the modulus values, at various temperatures, 

horizontally to plot a master curve of the material at a reference temperature. The shift 

factor (aT) defines the ratio between the reduced frequency at the reference temperature 

(𝜔𝑟)and the frequency at the desired temperature(𝜔), expressed as: 

a𝑇 =
𝜔𝑟

𝜔
   [3.1] 

A number of models were proposed to calculate the shift factors, including 

Williams-Landel-Ferry (WLF) and Arrhenius models. For the purpose of this study, a 

second order polynomial relation that expresses log (aT) in terms of temperature was 

used(Kutay and Jamrah 2013): 

log(𝑎𝑇) = 𝑎1𝑇
2 + 𝑎2𝑇 + 𝑎3 [3.2] 

where 𝑎1, 𝑎2𝑎𝑛𝑑⁡𝑎3 are regression coefficients. The variation of log(aT) with temperature, 

as obtained using equation 3.2, is shown in Figures 3.1 and 3.2 for both PG58-28 and 

PG64-28 binders, respectively.  
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Figure 3.1. log (aT) with temperature for PG58-28 binders 

 

Figure 3.2. log (aT) with temperature for PG64-28 binders 

The sigmoidal model has been used to describe the dynamic modulus of asphalt 

mixtures. Recently, it has been successfully applied by many researchers to model asphalt 



www.manaraa.com

57 

 

bitumens (Yao et al. 2012). The sigmoidal model can be used to represent the complex 

shear modulus of the bitumen G* in the following form: 

𝑙𝑜𝑔|𝐺∗| = 𝛿 +
𝛼

(1+𝑒𝛽+𝛾(log(𝑡𝑟)))
 [3.3] 

where 𝑡𝑟 is the reduced time of loading at the selected reference temperature, 𝛿 is the 

minimum value of G*, 𝛿 + 𝛼 is the maximum value of G*, and the parameters 𝛽 and 𝛾 

define the shape of the sigmoidal function.  

Figures 3.3 and 3.4 compare the G* master curves at the reference temperature of 

20oC for the PG64-28 and PG58-28 bitumens, respectively. It is obvious that the addition 

of the soybean modifier resulted in a reduction in the complex shear modulus at both high 

and low temperature ranges. The drop in the complex shear modulus was more 

significant in the low and intermediate temperature ranges, which is advantageous in 

terms of enhancing the fatigue and low-temperature thermal cracking resistance of the 

bitumen. The same trend was observed at all different aging stages of the two bitumen 

grades. The impact of the rejuvenator, at such low dosage, was substantial to the extent 

that the behavior of the PAV modified bitumen was comparable to the original unaged 

bitumen.  
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 Figure 3.3. Master curves for the control and modified PG64-28 bitumens 

 

Figure 3.4. Master curves for the control and modified PG58-28 bitumens 
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From the master curves, it can be concluded that the presence of the rejuvenator 

did not influence the aging characteristics of the bitumens. As expected, aging caused a 

distortion in the shape of the master curve indicating notable changes in the chemistry of 

the aged asphalt. Upon aging the master curve becomes flatter resulting in a decrease in 

temperature susceptibility.  Aging also led to an upward shift in the master curve 

denoting an increase in the complex shear modulus. These changes that were associated 

with aging were noted for both the aged modified and aged control bitumens.  

The shift factors obtained from the time-temperature superposition were used to 

generate phase angle master curves, as shown in Figures 3.5 and 3.6. The addition of the 

rejuvenator resulted in an increase in the phase angle in all cases. For both unaged 

bitumens, PG64-28 and PG58-28, the increase in phase angles was more pronounced at 

higher frequencies, corresponding to lower temperatures. With aging, both the modified 

and unmodified bitumens showed a decrease in phase angle, however the overall 

decrease in phase angle was higher in case of the modified bitumen. Nevertheless, the 

PAV aged modified bitumen still exhibited a notably higher phase angle compared to the 

PAV aged unmodified bitumen. 
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Figure 3.5. Phase angle master curve for the PG64-28 bitumen 

 

Figure 3.6. Phase angle master curve for the PG58-28 bitumen 
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3.3.2 Rutting and Fatigue resistance 

The rutting and fatigue resistance of the control and modified bitumens were 

assessed according to the bitumen specifications as given in AASHTO M320. The rutting 

parameter G*/sin, determined from the DSR measurements at a frequency of 10 rad/s, 

was plotted with temperature in Figure 3.7. The G*/sin parameter decreased with the 

addition of the soybean additive, indicating more susceptibility to rutting. Both bitumen 

grades showed very similar magnitudes of reduction in rutting with modification, where 

the rutting parameter dropped down to 7-10% of its original value. 

In addition to the frequency sweep described above, the bitumens were tested according 

to AASHTO T315 to determine their critical high temperatures. The critical high 

temperatures for the unaged and RTFO aged bitumens corresponding to G*/sin>1 kPa 

and G*/sin>2.2 kPa are shown in Table 3.1. 

Table 3.1. Properties of control and modified bitumens 

Bitumen PG58-28 

Control 

PG58-28 

Modified 

PG64-28 

Control 

PG64-28  

Modified 

Unaged (High Temp.),oC 60.0 45.1 67.1 51.5 

RTFO (High Temp.),oC 62.5 46.7 66.5 52.5 

PAV (Low Temp.),oC -29.9 -36.3 -29.0 -36.9 

Performed Grade (PG) 58-28 40-34 64-28 46-34 

Viscosity (Pa*s) at 135oC 0.329 0.1875 0.7175 0.3808 

Viscosity (Pa*s) at 150oC 0.172 0.1425 0.385 0.250 

Viscosity (Pa*s) at 165oC 0.107 0.125 0.2292 0.1933 

Mass loss (%) 0.82 0.99 1.01 1.00 
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Figure 3.7. Variation of G*/sinδ parameter with temperature 

The fatigue potential, measured by G*sin, was plotted against temperature as 

shown in Figure 3.8. Superpave specifies a G*sin of less than 5 MPa as a critical 

intermediate temperature. The modified bitumens showed a notable increase in fatigue 

resistance, as indicated by the lower critical intermediate temperatures noted. It is 

interesting to note however that the modified PAV 64-28 showed more resistance to 

fatigue than the modified PAV 58-28 even though both the control PAV PG64-28 and 

control PAV PG58-28 exhibited similar fatigue resistance. From these results, it can be 

inferred that the presence of the soybean additive had the effect of reducing the rate of 

aging in the polymer modified PG64-28 as compared to the neat PG58-28. So, it can be 

fairly said that the degree of improvement in fatigue properties depended on the type of 

bitumen where in this case the polymer modified PG64-28 showed greater improvement. 
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The exact reason for this type of behavior is not clear though, and a rigorous chemical 

analysis maybe required to reveal the nature of the interaction between the additive and 

the bitumen. Another important factor which may have had an effect is the interaction 

between the polymer and the additive. It should be noted however that the dependency of 

performance on the bitumen type was only true for fatigue, whereas rutting did not show 

such dependency.  

 

Figure 3.8. Variation of G*sin parameter with temperature 

To determine the critical low temperature of the PAV aged bitumens, tests were 

performed according to AASHTO T313. The results of the BBR testing is shown in 

Table 3.1, with the modified bitumens showing a significant reduction in critical low 

temperature. The overall Performance Grade (PG) of the modified bitumen, as shown in 

Table 3.1, indicates a significant change from the control bitumen.  
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The viscosity of the blend containing the soybean derived additive showed a 

noticeable decrease in viscosity at the different temperatures, indicating that the additive 

was successful in reducing the intermolecular interactions between the asphalt molecules.  

Of particular importance is the mass loss of the modified bitumens was comparable to 

that of the control bitumens, as shown in Table 3.1, which gives clear evidence to the 

thermal stability of the soybean additive.  

It is worth noting that such considerable change in the rheological properties was 

achieved by the addition of only 0.75% of the additive, which signifies its substantial 

effect. The dosage of the additive can be carefully controlled to achieve the required final 

properties of the blend.  

3.3.3 Black diagrams 

Since the properties of asphalt bitumens can only be fully described through both 

the dynamic modulus and phase angles, black diagrams were constructed to visually 

correlate between the two parameters. Black diagrams show the variation of the phase 

angle with the dynamic modulus. Unlike master curves, black diagrams simply plot the 

measured data without the need to do model fitting or shifting, hence inaccuracies in 

modeling is minimized. For this reason, black diagrams are found to be a very useful tool 

for analysis that is independent of temperature and frequency effects. Typically, black 

diagrams give a smooth curve that shows an increase in phase angle with decreasing 

complex shear modulus. At phase angles approaching 90o, the curve forms an asymptote 

signifying Newtonian behavior. The curve intercepts the Y-axis at the glass modulus at 0o 

phase angle.  
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The black diagram for the PG58-28 control and modified bitumens at the different 

aging conditions is shown in Figure 3.9. It is clear that the curves for the modified 

bitumens were shifted to the right of the control bitumens’ curves, denoting a reduction in 

stiffness accompanied by an increase in the phase angle. This observation was true at all 

aging stages. The amount of shift was the same for all aging states, which indicates that 

the rejuvenator’s impact on the bitumen properties was not influenced by aging. Such 

observation attests to the longevity of the rejuvenator and its prolonged effect on the 

bitumen. Figure 3.10 shows the black diagram of PG64-28 control and modified 

bitumens. It can be observed that there is a notable improvement in performance between 

the modified PAV bitumen and the control PAV bitumen. This observation points to the 

fact that the soybean additive had a positive effect on reducing the aging mechanism in 

the modified bitumen, as evidenced by the fatigue results in Figure 3.8 above.     

 

Figure 3.9. Black diagram for PG58-28 bitumens 



www.manaraa.com

66 

 

 

Figure 3.10. Black diagram for PG64-28 bitumens 

Black diagrams are also used to confirm that no phase separation between the 

rejuvenator and the asphalt bitumen is taking place with temperature. A smooth curve 

with no discontinuities mean that the material is rheologically simple, which indicates 

that the material is homogenous and no phase transition is occurring with temperature 

(Airey 2002). In this respect, black space diagrams can also be used to verify the validity 

of the time-temperature superposition principle which is essentially based on the 

assumption of the material being rheologically simple and linearly visco-elastic. The 

black diagrams for all the modified bitumens were smooth with no overlaps or sharp 

discontinuities, suggesting that the rejuvenator did not show any phase separation from 

the bitumen at any of the test temperatures, and confirming the validity of the time-

temperature superposition used to construct the master curves above.   
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3.3.4 Glover-Rowe diagrams 

The Glover-Rowe parameter was introduced to assess fatigue cracking of bitumen 

at low temperatures. This parameter was first introduced by Glover (Glover et al. 2005) 

and was then found to correlate well with bitumen ductility measurements made by 

Kandhal (Kandhal 1977). Such correlation was based on Glover’s fatigue parameter 

obtained using DSR measurements at 15oC and 0.005 rad/s. According to Kandhal’s 

work, the onset of cracking is marked by 5cm ductility and significant damage takes 

place when the material reaches 3cm ductility. The Glover-Rowe parameter was used to 

define a damage zone outlining the two stages of damage, namely damage onset and 

significant cracking. The damage thresholds are defined according to the equations: 𝐺∗ ∗

𝑐𝑜𝑠𝛿2
𝑠𝑖𝑛𝛿⁄ = 180⁡𝑘𝑝𝑎 for damage onset and⁡𝐺∗ ∗ 𝑐𝑜𝑠𝛿

2

𝑠𝑖𝑛𝛿⁄ = 450⁡𝑘𝑝𝑎 for 

significant damage. These equations are based on a test temperature of 15oC and a test 

frequency of 0.005 rad/s.  

Recognizing the excessively long time of testing at such a slow loading rate of 0.005 

rad/s, it was suggested to use frequency sweeps conducted at temperatures above and 

below 15oC to obtain G* and  at a temperature of 15oC and a frequency of 0.005 rad/s 

using the principle of time shifts (Anderson et al. 2011).    

In this study, the results of the DSR frequency sweeps covered an extended range 

of temperatures from 0 to 40oC so it was possible to calculate time shifts at an 

intermediate reference temperature of 15oC. Using these time shifts, a sigmoidal function 

fit was obtained to represent a master curve at 15oC. The value of G* and , at 15oC and 

0.005 rad/s were plotted along with the Glover-Rowe parameters as shown in Figure 
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3.11. The lower and upper Glover-Rowe bounds defines a damage zone where the former 

represents the onset of damage and the latter represents significant cracking.  

Figure 3.11 shows the change in the state of the bitumen with aging in comparison to the 

Glover-Rowe damage lines. Generally, aging is shown to push the bitumen closer to the 

damage lines. At PAV aging, the PG64-28 bitumen crossed the onset damage line into 

the damage zone marking crack initiation. The PG58-28 did not fall into the damage zone 

after PAV aging, however it was very close indicating that a limited additional time of 

PAV aging would have rendered it damaged. The use of the soybean additive brought 

about a considerable reduction in the complex shear modulus and an increase in the phase 

angle, which is opposite to the effect of aging. With the addition of the soybean additive, 

the modified bitumen was pushed away from the damage lines indicating an enhanced 

ability to withstand additional time of PAV aging without failure. It is interesting to note 

that the rate of aging of the modified PG64-28 bitumen was less than the control PG64-

28, whereas this was not the case for the PG58-28 bitumen. This finding confirms with 

both the results from the fatigue parameter and black diagram. The soybean additive 

works in a way to render the polymer modified PG64-28 bitumen less susceptible to 

aging, and hence increases its fatigue resistance.   
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Figure 3.11. Glover-Rowe diagram 

3.3.5 Cole-Cole diagram 

Another widely-used diagram that serves as a mean of bitumen characterization is 

the modified Cole-Cole plot, which shows the elastic complex shear modulus (G’) versus 

the viscous complex shear modulus (G’’). The plot provides a simple visual tool to 

describe the relationship between the elastic and viscous behavior of a bitumen. A 

straight line defined by G’=G” is usually superimposed on the plot to provide more 

insight on the significance of the data. This line acts as a boundary line where data points 

lying to its left indicate prevalence of the viscous properties whereas data points on its 

right indicates a shift towards a more elastic behavior. Figures 3.12 and 3.13 present the 

Cole-Cole diagram for both PG58-28 and PG64-28 bitumens, respectively. At high 

temperatures, the viscosity portion of the complex shear modulus is dominant. As the 

temperature decreases, the bitumen starts to lose some of its viscous characteristics in 

favor of the elastic behavior. Eventually, the overall behavior is dominated by the elastic 
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mechanism at low temperatures. The aged bitumens show more elastic behavior 

compared to the unaged bitumens at all test temperatures. The addition of the soybean 

into the control bitumens adds more viscosity, mainly due to its effect on increasing the 

phase angle. All the tested bitumens exhibited an almost linear relationship in the Cole-

Cole diagram which essentially means that no structural changes were evident with the 

addition of the soybean additive.   

 

Figure 3.12. Cole-Cole diagram for PG58-28 
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Figure 3.13. Cole-Cole diagram for PG64-28 

3.4 Summary and Conclusions 

In this work, a bio-derived soybean material was added to both a polymer 

modified PG64-28 and a neat PG58-28 bitumens at a low dosage of 0.75% by mass. DSR 

was used to conduct a frequency sweep on both the control and modified bitumens at 

further stages of aging, namely unaged, RTFO and PAV aged. The data from the 

frequency sweeps were used to construct master curves for the different bitumens. 

Comparison of the master curves showed a considerable reduction in the complex shear 

modulus accompanied by an increase in phase angle with the addition of the soybean 

derived material. These changes were evident for both types of bitumens. Further analysis 

of the modified bitumens was done to determine the Performance Grade using a DSR and 

BBR. It was noted that a considerable improvement in fatigue and low temperature 

performance was achieved with the soybean additive. This improvement was maintained 
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even after the modified bitumen was subjected to PAV aging. In one case, the modified 

PAV 64-28 bitumen even showed a reduced aging rate compared to the control PAV 64-

28 bitumen. The mass loss of the modified bitumens were comparable to those of the 

control bitumens, which attests to the thermal stability of the biomaterial used. The black 

diagrams for the modified bitumens showed a continuous plot with no discontinuities 

implying no phase separation with temperature.  

The Glover-Rowe parameters were used to assess the non-load induced cracking 

potential of the bitumens. Based on this model, it was found that the control PAV aged 

bitumens either cracked as with the PG64-28 bitumen or was close to cracking as with 

the PG58-28 bitumen. However, the addition of the soybean derived biomaterial greatly 

enhanced the cracking resistance of the bitumens, as suggested by the Glover-Rowe 

model, which would allow for additional hours of aging without cracking. Using a Cole-

Cole diagram, it was shown that the biomaterial increased the viscosity of the bitumen at 

all temperatures.  

In summary, the soybean derived biomaterial used was successful in introducing 

notable changes to the rheology of both a polymer modified and a neat bitumen, at a very 

low dosage of 0.75%. This is considered a significant effect when compared to the 

regular dosages used for commercial rejuvenators which usually exceeds 12%. With such 

significant performance, an even lower dosage can be designed to tailor the properties of 

the blend without greatly sacrificing the rutting resistance. The next phase of this work 

would involve testing the biomaterial on aged RAP bitumen to further verify its 

rejuvenating ability.  
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CHAPTER 4. IMPROVING FATIGUE AND LOW TEMPERATURE 

PERFORMANCE OF 100% RAP MIXTURES USING A SOYBEAN-DERIVED 

REJUVENATOR 

Modified from a paper published in Construction and Building Materials 

Mohamed Elkashefa*, R. Christopher Williamsa 

Abstract 

One of the major obstacles towards higher mixture percentages of reclaimed 

asphalt pavements (RAP) is its greater susceptibility to failure under low temperatures 

and fatigue loading. Rejuvenators offer a very attractive solution by partially or fully 

restoring the aged properties of the RAP binder. In this research, a soybean-derived 

rejuvenator is used to modify a PG58-28 binder at 6% and 12% by weight. The soybean-

modified PG58-28 and a neat PG58-28 are blended with an extracted RAP binder. 

Changes in the rheological properties of the different blends are assessed using 

performance grading (PG), temperature-frequency sweep and linear amplitude sweep 

(LAS) testing. RAP mixtures made of 100% RAP with the addition of neat PG58-28 or 

soybean-modified PG58-28 were used to prepare dynamic modulus and disk-shaped 

compact tension (DCT) specimens. The binder testing results clearly indicate that the 

soybean rejuvenator has a significant impact on the both the low and high temperature 

properties of the RAP binder. Such improvement was not attainable by using the neat 

PG58-28 alone. The soybean rejuvenator also showed sustained durability with aging. 

The LAS results indicated a significant increase in the fatigue life of the soybean 

rejuvenated RAP binder. Results of dynamic modulus testing did not reveal significant 

differences between the various mixtures. The fracture energy of the mixtures prepared 



www.manaraa.com

81 

 

with the soybean rejuvenator were higher than the control mixtures as revealed by DCT 

test results. 

4.1 Introduction 

Over the past several years, there has been an increasing interest in reclaimed 

asphalt pavement (RAP) owing to the increase in virgin binder and aggregate costs and 

RAP being readily available. Environmental concerns over binder production as well as 

the declining supply of good virgin aggregates are also strong reasons in favor of more 

RAP usage. The current low trends in using RAP, which did not exceed 20% RAP in new 

mixtures during the year 2014, is attributed to the deteriorated properties of the RAP 

binder (Hansen and Copeland 2015). Aged RAP binder exhibits high stiffness and low 

stress relaxation ability as a result of excessive oxidation (Yu et al. 2014). Additionally, 

high RAP content mixtures tend to be difficult to field compact and can lead to 

unexpected premature failure (Copeland 2011).  

A number of techniques have been devised to mitigate the effect of RAP 

including adding a softer virgin binder, increasing the asphalt content, and utilizing 

warm-mix technology to lessen the effect of short-term aging and lower asphalt 

absorption (Im et al. 2016). These techniques seem to be appropriate for mixtures with 

low RAP content however they fail to provide satisfactory results with increasing RAP 

content (West et al. 2013). Rejuvenators have provided the impetus for researchers to 

further investigate mixtures with increasing RAP content. Rejuvenators are added to aged 

binders to help partially or fully restore their aged properties to its original state.  

During aging, the maltenes fraction in the asphalt is converted to the more viscous 

asphaltenes fraction by means of oxidation. Asphaltenes, with higher molecular weight, 



www.manaraa.com

82 

 

tend to form a colloidal suspension in the lower molecular weight maltenes. Asphaltenes 

is largely responsible for the viscosity of asphalt materials (Firoozifar et al. 2011). An 

increase in asphaltenes due to aging result in high stiffness and low creep rate. 

Rejuvenators reverse the effect of aging by either providing more maltenes to balance the 

excess amount of asphaltenes, or by allowing better dispersion of asphaltenes (Elseifi et 

al. 2011). Several studies have examined the low temperature properties and stiffness of 

aged binders upon rejuvenation (Elseifi et al. 2011; Zaumanis et al. 2015). It was shown 

that rejuvenators improve low temperature cracking resistance and reduce the aged binder 

stiffness. A number of rejuvenators have been proposed including petroleum based 

aromatic extracts, distilled tall oil, and organic oil (Zaumanis et al. 2014). 

The durability of rejuvenators is crucial to their proper usage. Softening agents 

containing volatile compounds can only provide a temporary reduction in stiffness to aid 

compaction. Upon volatilization of these compounds, the softening agents can no longer 

provide additional enhancement to the mixture. Rejuvenators need to have a prolonged 

effect on the asphalt mixture properties. In a recent study, the long-term aging 

performance of five different rejuvenators was studied (Mohammadafzali et al. 2015). It 

was shown that the studied rejuvenators differ greatly in terms of their durability 

performance. Some rejuvenators improved the aging rate compared to the virgin binders 

whereas others accelerated aging. The chemistry of the interaction between the 

rejuvenator and the binder is also very important. A recent study showed that an aromatic 

extract rejuvenator worked effectively for a PG58-10 and not as effectively with a PG58-

28 binder(Yu et al. 2014).  



www.manaraa.com

83 

 

Cracking induced by fatigue is considered a primary mode of distress in asphalt 

pavements. The viscoelastic properties of the asphalt binder determine to a great extent 

the fatigue performance of asphalt mixes (Bahia et al. 2001). The fatigue resistance of 

binders is currently characterized using the fatigue parameter, 𝐺∗ ∗ 𝑠𝑖𝑛𝛿. This parameter 

is determined using a Dynamic Shear Rheometer (DSR) measurements at 1% strain rate, 

as per AASHTO T315, to ensure that the binder remains within the linear viscoelastic 

region. Such approach has failed to capture the performance of binders under destructive 

loading which results in accumulated damage (Bahia et al. 2001). The Time sweep (TS) 

test was introduced based on the work done on NCHRP Project 9-10 (Bahia et al. 2001; 

Bonnetti et al. 2002). The TS test is conducted using a DSR on an RTFO+PAV aged 

binder with an 8-mm-diameter geometry. In this test a repeated cyclic load is applied 

under constant strain rate until failure.  Failure is typically marked by a 50% drop in G* 

(Kim et al. 1997). The choice of the constant strain rate at which to run the test is 

determined to reflect the pavement structure and traffic conditions. A major drawback of 

the TS test is the uncertainty in testing time and the fact that it can take several hours to 

perform. Additionally, such elongated testing time may cause steric hardening of the 

binder, which could skew the results (Planche et al. 2004). Recently, the Linear 

amplitude sweep test (LAS) was introduced as an efficient test to characterize fatigue in 

binders (Johnson et al. 2009). Similar to the TS test, the LAS test uses an 8-mm-diameter 

and a 2-mm gap geometry, to apply a repeated cyclic load to the binder sample. In the 

LAS test however, an increasing strain rate is applied to induce accumulated damage. In a 

recent study that investigated the use of six different recycling agents on the fatigue life 

of 100% RAP mixtures, LAS testing was used to evaluate the number of cycles to failure 
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for all rejuvenated blends (Zaumanis et al. 2015). It was concluded that the bio-derived 

recycling agents were superior to the petroleum based recycling agents. The bio-derived 

recycling agents increased the number of cycles to failure in the RAP binder to a level 

comparable to that of the virgin binder. In another study, LAS testing was used to assess 

the fatigue performance of a RAP binder blended with both a soft and a stiff virgin 

binders at both 20% and 50% RAP binder content. It was shown that the fatigue life 

increased with higher amounts of RAP binder. It was also concluded that using a softer 

binder in lieu of a stiff binder led to better performance compared to increasing the stiff 

virgin binder content (Willis et al. 2012).  

Using RAP can have a great impact on the low temperature cracking potential of 

asphalt mixtures. Hence, it is important to assess the low temperature properties of 

mixtures prepared with RAP. The disk-shaped compact tension (DCT) is one of the 

commonly used tests to assess low temperature cracking resistance (Wagoner et al. 

2005). The DCT test gives the fracture energy, in J/m2, for a crack to propagate through a 

notched specimen under a displacement-controlled tensile loading. A comprehensive 

study that correlated fracture energy to field performance showed that a fracture energy 

between 350-400 J/m2 marks a sufficient resistance against thermal and reflective 

cracking (Buttlar et al. 2010). Minimal occurrence of transverse cracking was found in 

mixtures with fracture energies above 400 J/m2 (Buttlar et al. 2010). A recent 

investigation that looked into the effect of different percentages of recycled materials into 

asphalt mixtures was conducted at Iowa State University and the University of Illinois 

Urbana-Champaign (Williams et al. 2011). This study looked at low temperature 

performance of eight different mixtures, containing various percentages of RAP and 
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recycled asphalt shingles (RAS), used in the construction of Illinois Tollway (I-90). DCT 

testing done at -12oC revealed that the fracture energy decreased with the addition of 

recycled materials, with the specimens containing 50% recycled materials failing to meet 

the minimum threshold of 350 J/m2 (Williams et al. 2011). DCT testing was also used to 

assess the effect of aging on the low temperature fracture behavior of asphalt mixtures 

(Braham et al. 2009). It was concluded that fracture energy decreased consistently with 

longer hours of aging. With aging, an increase in the peak load was noted followed by a 

steep drop in the load resulting in an overall less area under the load-displacement curve 

hence less fracture energy.  

Previous studies have shown that the soybean-derived additive was successfully 

applied to reduce the stiffness and enhance the low temperature properties of both a 

polymer modified PG 64-28 and a neat PG 58-28 binders (Elkashef et al. 2017). Fourier 

transform Infrared-Attenuated total reflection (FTIR-ATR) analysis has verified the 

durability of the binders rejuvenated with the soybean-derived additive by examining 

changes in the carbonyl and sulfoxide indices with aging. In this work, the soybean-

derived additive is used to modify RAP binders and to prepare 100% RAP mixtures.    

4.2 Materials and Methods 

A PG58-28 and a soybean-derived rejuvenator was used for this study. The 

reclaimed asphalt pavement (RAP) used in this study was milled from pavements in the 

State of Iowa, USA. The RAP was crushed to a nominal maximum aggregate size of 12.5 

mm, and dried in an oven at 110oC. The RAP gradation is given in Table 4.1. The RAP 

binder content was determined to be 5.1% using an ignition oven. Extraction of the RAP 

binder was performed as per ASTM D2172-Method A- using toluene as a solvent. 
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Subsequent recovery of the RAP binder was done by the aid of a rotary evaporator as 

specified in ASTM D5404. A nitrogen blanket was pumped over the binder solution 

continuously to eliminate any oxidation of the RAP binder resulting from the recovery 

process. In the determination of the PG of the RAP binder, the extracted RAP binder was 

considered already RTFO aged and hence was used directly to determine the RTFO 

critical high temperature. The RAP binder was however PAV aged before testing for the 

critical low temperature using a Bending Beam Rheometer (BBR).  

Table 4.1: RAP gradation 

Sieve Size (in.) Sieve Size (mm) Percent passing 

3/4 19 100 

1/2 12.5 91 

3/8 9.5 82 

#4 4.75 57 

#8 2.36 42 

#16 1.18 26 

#30 0.6 14 

#50 0.3 12 

#100 0.15 10 

#200 0.075 8 

 

The PG58-28 binder was initially blended with the soybean rejuvenator at a 

dosage of 6% and a 12% by weight. The prepared blends were then mixed with the 

extracted RAP binder at a ratio of 1:5 by weight, resulting in an effective rejuvenator 

dosage rate of 1% and 2% by total weight of binder respectively. This ratio was selected 

to match with the proportions of the binder in the tested asphalt mixtures. A control blend 

was prepared by mixing the RAP binder with a neat PG58-28 at the same ratio. Hence the 

binder characterization phase is comprised of four different binders as follows; RAP 

binder, RAP binder+ PG58-28, RAP binder+ 6% modified PG58-28 and RAP binder+ 

12% modified PG58-28.  
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To evaluate the performance grade of the different binders, DSR and BBR tests 

were performed as per AASHTO T315 and AASHTO T313, respectively. Rolling thin 

Film Oven (RTFO) aging was done in accordance with ASTM D2872 at 163oC for 85 

minutes. PAV aging was conducted on the RTFO aged binder as per ASTM D6521 for a 

duration of 20 hours at 100oC and 2.1 MPa pressure.  

A temperature-frequency sweep was performed for both the RTFO and 

RTFO+PAV aged binders using a DSR. For the RTFO aged binders, a 25-mm diameter 

and a 1-mm gap geometry was used, whereas an 8-mm diameter and a 2-mm gap 

geometry was used for the RTFO+PAV aged binders. A temperature range that extends 

from 10oC to 34oC at 6oC increments was used for the RTFO+PAV aged binders with 

frequencies that ranged from 0.6 to 100 rad/s. The same frequency range was used for the 

RTFO aged binders but with temperatures that ranged from 46oC to HTPG+6oC for the 

soybean-modified binders and 70oC to HTPG+6oC for the other binders. HTPG stands for 

the high temperature PG of the specific binder. The Christensen-Anderson-Marasteanu 

(CAM) model was used to construct master curves at a reference temperature of 70oC for 

the RTFO aged binders and 22oC for the RTFO+PAV aged binders.  

Linear amplitude sweep (LAS) testing was done on RTFO+PAV aged binder 

using a DSR with an 8-mm-diameter and a 2-mm gap geometry as per AASHTO TP 101.  

Dynamic modulus specimens were made using a mixing and compaction 

temperature of 140oC. A Superpave gyratory compactor was used to compact the 

specimens which were designed to have a total binder content of 6% and a target air void 

of 4%. Three specimens were prepared for each test group. Dynamic modulus testing was 

conducted according to AASHTO T342, at 4oC, 21oC, and 37oC. The specimens 
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measured 100mm in diameter and 150mm in height. To ensure that the deformation 

remains within the linear viscoelastic range, the axial strain was kept between 50 and 150 

micro-strain. Deformations were recorded using the average reading of three LVDTs 

placed around the circumference of the specimen. The LVDTs were attached to the 

specimen using mounted brackets and buttons glued to the specimen face. The sigmoidal 

model was used to construct master curves at a reference temperature of 21oC.  

The disk-shaped compact tension (DCT) test was conducted according to ASTM 

D7313 to evaluate the low temperature cracking resistance of the mixtures. Testing was 

performed on lab-compacted samples with a binder content of 6% and a target air void 

content of 4%.   

4.3 Results and discussion 

4.3.1 Performance grading (PG) and ΔTc 

The binders were tested in accordance with AASHTO T315 to determine their 

critical high temperatures. The specification criteria used to determine the critical high 

temperature were G*/sinδ>1 kPa and G*/sinδ>2.2 kPa for both the unaged and RTFO 

aged binders, respectively. The extracted RAP binder was not RTFO-aged as it was 

considered short-term aged. Hence, it was tested as is to determine its RTFO critical high 

temperature. Accordingly, there was no unaged data for the extracted RAP binder. The 

PG results are shown in Table 4.2. The RAP binder was shown to be considerably aged 

with a very high critical temperature of 108.6oC. The critical high temperature of the 

RAP binder was reduced by almost 30 degrees, when blended with the 6% modified 

PG58-28. This large reduction in the critical high temperature caused the binder to drop 

down by 5 PGs, which is quite a significant drop. In comparison, the mere addition of the 
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neat PG58-28 to the RAP binder led to a drop of only one PG. It is also important to note 

that there was no significant mass loss associated with the soybean additive, which attest 

to its thermal stability.  

The critical intermediate temperature was also determined using PAV aged 

binders, as shown in Table 4.2. The critical intermediate temperature was based on the 

criterion G* x sinδ < 5000 kPa. A slight drop in the RAP binder’s critical intermediate 

temperature was noted with the use of the neat PG58-28. The soybean-modified PG58-28 

had a much more notable effect on the critical intermediate temperature. 

The critical low temperature of the PAV aged binders was determined according 

to AASHTO T313, and the results are displayed in Table 4.2. The soybean-modified 

RAP binder showed a significant decrease in the critical low temperature compared to the 

pure RAP binder. This decrease in the critical low temperature resulted in a one PG and a 

two PG drop with the addition of a 6% and 12% modified PG58-28 respectively. 

Compared to the effect of the neat PG58-28 which had almost no impact on the critical 

low temperature, it can be fairly concluded that the soybean modification was largely 

successful in enhancing the low temperature properties of the RAP binder.  

Table 4.2. Binder Properties 

Binder RAP RAP+ 

PG58-28 

RAP+ 6% 

Modified 

PG58-28 

RAP+ 12% 

Modified 

PG58-28 

Unaged (High Temp.), oC NA 105.6 78.4 76.2 

RTFO (High Temp.), oC 108.6 99.9 76.5 73.9 

PAV (Intermediate 

Temp.), oC 

29.9 28.3 24.6 23.2 

PAV (Low Temp.), oC -10.8 -11.9 -20.2 -22.3 

Performance Grade (PG)  106-10 100-10 76-16 70-22 

ΔTc, 
oC -9.7 -9.2 -6.6 -5.5 

Mass loss (%) NA 0.4 0.4 0.5 
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The BBR test provides a plot of the stiffness of the tested beam with time. The 

value of the stiffness and the slope of the stiffness curve at a time of 60 seconds are 

referred to as S and m respectively. The parameter ΔTc  was recently introduced as a 

measure to assess the non-load thermal cracking potential of binders(Anderson et al. 

2011). ΔTc is readily calculated from the BBR results, as the difference between the 

continuous grade temperatures at S=300 MPa and m=0.3 as per ASTM D7643. Earlier 

work has shown that the parameter ΔTc is related to aging where a decrease in that 

parameter is noted as the binder loses its ability to undergo stress relaxation (Anderson et 

al. 2011; Glover et al. 2005). Aged binders were shown to exhibit a strong m-controlled 

behavior, where the low temperature properties become largely limited by the m-value. 

The critical low temperature of an m-controlled binder is dictated by its m-value. Hence 

the temperature at which m=0.3 is significantly higher than that at which S=300, leading 

to large negative values for ΔTc. From Table 4.2, the RAP binder showed a very low 

value of ΔTc indicating that stress relaxation is greatly hindered by the excessive 

oxidation that accompanied aging. Mixing the RAP binder with unmodified PG58-28 

binder does not significantly improve its stress relaxation ability. However, an increase in 

the parameter ΔTc is obvious with the addition of the soybean-modified PG58-28. 

Nevertheless, all tested binders showed m-controlled behavior.  

4.3.2 Complex shear modulus master curves 

Temperature-frequency sweeps results can be used to fully characterize asphalt 

binders over a wide range of frequencies and temperatures using the concept of time-

temperature superposition. time-temperature superposition principle defines shift factors 

which are used to transform properties at a given frequency and test temperature to an 
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equivalent reduced frequency at a reference temperature. Shift factors are calculated 

using the Williams-Landel-Ferry (WLF) equation as given by: 

𝑙𝑜𝑔𝛼𝑇 = −
𝐶1(𝑇−𝑇𝑜)

𝐶2+(𝑇−𝑇𝑜)
 [4.1] 

where αT = shift factor; To = reference temperature, T= test temperature, and the 

parameters C1 and C2 are dependent on the reference temperature.   

Once shift factors are determined, the reduced frequency, ωr ,can be obtained 

from the test frequency, ω, using  

α𝑇 =
𝜔𝑟

𝜔
 [4.2] 

The Christensen-Anderson-Marasteanu (CAM) model is considered very effective 

in describing the rheological behavior of asphalt within the linear viscoelastic region(Kim 

2008). The CAM model is expressed as follows(Marasteanu and Anderson 1996): 

|𝐺∗| = 𝐺𝑔 [1 + (
𝜔𝑐

𝜔
)
𝜈

]

−𝑤
𝜈⁄

 [4.3] 

where G*= complex shear modulus, Gg = glassy modulus,  ωc = crossover frequency, and 

both w and ν are model parameters. w defines the rate at which the complex modulus 

curve reaches an upper and lower asymptote. ν is equal to log(2)/R, where R is the 

rheological index. The rheological index is the difference between the glassy modulus 

and the modulus at the crossover frequency.  

Figures 4.1 and 4.2 shows the complex shear modulus master curves for both the 

RTFO aged and the RTFO+PAV aged for all binders at a reference temperature of 70oC 

and 22oC, respectively. It is evident that the soybean modification had a much more 

significant effect on reducing the RAP binder’s complex shear modulus compared to the 

mere blending of the neat PG58-28 binder. This notable impact on the complex shear 
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modulus, brought about by the soybean modification, was still evident after PAV aging. 

In comparison, the effect of the unmodified virgin binder PG58-28 was significantly 

diminished upon PAV aging. This result could potentially mean that the soybean 

modification resulted in a better aging resistance. With soybean modification, the 

reduction in the complex shear modulus of the RTFO+PAV aged RAP binder remained 

significant at low and intermediate frequencies. At very high frequencies denoting very 

low temperatures, the complex shear modulus of the soybean modified RAP binder was 

no longer significant from that of the RAP binder. This is typical of asphalt materials as 

the master curves tend to converge to an asymptote at very high frequencies.  

The shape of the master curves, as described in part by the rheological index, R, 

can be used as an indication of aging. Upon aging, master curves show a more gradual 

transition from viscous to elastic behavior which results in a flatter shape.  A study of 

both Figures 4.1 and 4.2, clearly shows that the master curves of all binders get flatter 

with PAV aging. Figure 4.2 however show that the two soybean-modified RAP binders 

did not show as much flatness compared to the other two binders, namely pure RAP and 

RAP blended with PG58-28. This observation also supports the notion that the soybean 

modification improves the aging resistance of the binders. 
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Figure 4.1. Complex shear modulus master curves for RTFO aged binders at 70oC 

 

Figure 4.2. Complex shear modulus master curves for PAV aged binders at 22oC 

The shift factors, obtained from the fitting of the complex shear modulus master 

curves, were used to develop phase angle master curves as shown in Figures 4.3 and 4.4 
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for both RTFO and RTFO+PAV aged binders, respectively. The soybean modification 

resulted in an increase in the phase angle at all frequencies. This trend was seen for both 

RTFO and RTFO+PAV aged binders. An increase in the phase angle marks a more 

viscous behavior. A shift towards viscous behavior enhances stress relaxation and 

ultimately improves fatigue resistance.   

The crossover frequency, defined as the frequency at a phase angle of 45o, marks 

the transition between viscous and elastic behavior. The behavior is predominantly 

viscous for frequencies below the crossover frequency whereas a change into a dominant 

elastic behavior is seen for frequencies above the crossover frequency. A study of both 

Figures 4.3 and 4.4 show that the crossover frequency undergoes many orders of 

magnitude increase due to soybean modification. The RAP binder initially shows a very 

low crossover frequency, which decreases even further with PAV aging. Such a low 

crossover frequency renders the behavior of RAP binder predominantly elastic. Addition 

of the unmodified PG58-28 slightly increases the crossover frequency of the blend. The 

use of the soybean modified PG58-28, however, brings about a considerable increase in 

the crossover frequency.  
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Figure 4.3. Phase angle master curves for RTFO aged binders at 70oC 

 

Figure 4.4. Phase angle master curves for PAV aged binders at 22oC 

4.3.3 Linear Amplitude Sweep (LAS) test 

The LAS test is based on the principle of Viscoelastic Continuum Damage 

(VECD). VECD defines damage in terms of a damage parameter. This damage parameter 
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quantifies the amount of damage relative to the undamaged properties. The undamaged 

properties are determined by applying a frequency sweep at a low strain rate of 0.1% 

prior to the application of the strain amplitude ramping procedure. A constant frequency 

of 10 Hz is applied with an increasing strain rate from 0.1% to 30%. Testing is done on 

RTFO+PAV aged binder using an 8-mm diameter and a 2-mm gap geometry. The LAS 

test is efficient in that the total duration of the test, including the initial frequency sweep, 

do not exceed 20 minutes. VECD analysis is used to transform the results into an estimate 

of the fatigue life at different constant strain amplitudes.  

VECD is based on Schapery’s work potential theory which establishes a 

relationship between damage and work performed as given by (Schapery 1984): 

𝑑𝐷

𝑑𝑡
= (

𝑑𝑊

𝑑𝐷
)
𝛼

 [4.4] 

where t is time, W is work performed, D is damage intensity, and α is a material constant 

related to the rate at which damage occurs.  

To determine α, the following equation is used 

𝛼 = 1 +
1

𝑚
 [4.5] 

where m is the slope of the log-log plot of storage modulus versus frequency. This plot is 

obtained using the initial frequency sweep.   

The dissipated work (W) under strain-controlled conditions is expressed as: 

𝑊 = 𝜋𝛾𝑜|𝐺
∗|𝑠𝑖𝑛𝛿 [4.6] 

where  γo is shear strain, G* is complex modulus, and δ is phase angle.  

An expression is developed, using the above relationships, to calculate the 

damage intensity (D) as a function of time. The test results data is then used to determine 

the accumulation of damage intensity throughout the loading history.  
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A power law was suggested to fit a relationship between |𝐺∗|𝑠𝑖𝑛𝛿 and the damage 

intensity, D, in the form of (Hintz et al. 2011): 

|𝐺∗|𝑠𝑖𝑛𝛿 = 𝐶𝑜 − 𝐶1(𝐷)
𝐶2 [4.7] 

where Co is the value of |𝐺∗|𝑠𝑖𝑛𝛿 during the 0.1% strain amplitude step, 𝐶1and 𝐶2 are 

model coefficients.  

Substituting Equation 4.7 into Equation 4.4 and integrating, an expression 

defining the number of cycles to failure (Nf) can be derived in the form of (Kim et al. 

2006): 

𝑁𝑓 = 𝐴(𝛾𝑚𝑎𝑥)
−𝐵 [4.8] 

where the coefficients A and B are defined as: 

𝐴 =
𝑓(𝐷𝑓)

𝑘

𝑘(𝜋𝐼𝐷𝐶1𝐶2)𝛼
 [4.9] 

𝐵 = 2𝛼 [4.10] 

where 𝑘 = 1 + (1 − 𝐶2)𝛼,  𝐼𝐷⁡is the initial value of⁡|𝐺∗| at 1% strain, f is the loading 

frequency of 10Hz, and 𝐷𝑓 is the damage intensity at failure, defined as 35% reduction in 

𝐶𝑜. 

Using Equation 4.8, an estimate of the number of cycles to failure can be obtained 

for a given strain rate, γmax. 

In this work, the LAS test is conducted at three different temperatures, 25oC, 

28oC, and 31oC. These temperatures covered the range of fatigue/intermediate critical 

temperatures for all binders, as given in Table 4.2.  

A log-log plot of the number of cycles to failure versus strain rate gives a straight 

line with an A intercept and a slope equals to -B. Such plots are shown at the various test 

temperatures in Figures 4.5-4.7. An increase in the coefficient B, which depends solely 
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on the parameter α, indicates a higher rate of deterioration at higher strain rates. As 

expected, the RAP binder with a steeper slope, thus larger B, showed considerable 

deterioration and loss of fatigue life with increasing strain rate. The RAP binder 

rejuvenated with the soybean-modified PG58-28 at both 6% and 12% dosage showed 

considerable improvement with increasing shear strain rates. These rejuvenated binders 

did not exhibit a drastic loss in fatigue resistance with increasing shear strain rates as 

observed in both the RAP binder and the RAP binder blended with the unmodified PG58-

28. This trend was true at all test temperatures.   

The effect of rejuvenation was more prominent at strain rates of 5% and above. At 

a strain rate of 2.5%, the difference between the RAP binder blended with PG58-28 and 

the rejuvenated RAP binders was not significant. In fact, the RAP binder blended with 

PG58-28 showed slightly better performance at low strain rates. A strain rate of 5% was 

found to correlate best with fatigue in mixtures as measured by the energy ratio test(Tran 

et al. 2012). The energy ratio test involves three different tests namely resilient modulus, 

creep compliance, and indirect tensile strength. It was found that the dissipated creep 

strain energy at failure obtained from the energy ratio test correlated best with the cycles 

to failure from the linear amplitude sweep test at 5% strain rate(Tran et al. 2012). 

Cracked sections in pavements studied under the long-term pavement performance 

(LPPT) program showed close correlation to 4% strain (Hintz et al. 2011). Hence a 

comparison based on 5% strain is more in line with field performance. A 5% binder strain 

corresponds to a value of 1000 microstrain in the pavement layer (Hintz et al. 2011).  
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Figure 4.5. Cycles to failure at test temperature of 31oC 

 

Figure 4.6. Cycles to failure at test temperature of 28oC 
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Figure 4.7. Cycles to failure at test temperature of 25oC 

Figure 4.8 shows a plot of the cycles to failure measured at 5% strain rate for all 

binders at three different test temperatures. The impact of rejuvenation on fatigue life was 

more pronounced at lower temperatures. It is evident that the improvement attained with 

the addition of the rejuvenator is more prominent with decreasing temperatures. As the 

temperature decreased from 31 to 25, the RAP binder showed considerable reduction in 

fatigue performance compared to the rejuvenated RAP binders. These results provide 

evidence of the improved fatigue resistance of the rejuvenated binders.  



www.manaraa.com

101 

 

 

Figure 4.8. Cycles to failure at a strain rate of 5% 

4.3.4 Dynamic modulus  

Dynamic modulus (E*) testing measures the stiffness of asphalt mixtures over a 

wide range of frequencies and temperatures, which relates to different environmental 

conditions and traffic loading.  The E* test was developed during NCHRP project 9-19 

(Herrington 1995; Witczak et al. 2002) and is now considered a key input parameter in 

AASHTOWare Pavement ME Design (AASHTO 2016). The test proposed by Witczak 

(Witczak 2005) applies a compressive haversine load at a frequency ranging from 25 to 

0.01 Hz at different temperatures.  

In this work, the tested specimens were prepared using RAP mixtures with the 

addition of virgin PG58-28 and soybean-modified PG58-28 at 6% and 12% dosage. 

Mixing and compaction were done at 140oC. Three specimens were prepared at each test 

mixture, making a total of nine specimens  
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The sigmoidal model was used to fit the dynamic modulus test data to construct 

master curves for the asphalt mixtures. The sigmoidal model is expressed as, 

𝑙𝑜𝑔|𝐸∗| = 𝛿 +
𝛼

(1+𝑒𝛽+𝛾(log(𝑡𝑟)))
              [4.11] 

where 𝑡𝑟 is the reduced time of loading at the selected reference temperature, 𝛿 is the 

minimum value of E*, 𝛿 + 𝛼 is the maximum value of E*, and the parameters 𝛽 and 𝛾 

define the shape of the sigmoidal function.  

The dynamic modulus master curves for all mixtures, at a reference temperature 

of 21oC, are shown in Figure 4.9. The shift factors obtained from fitting the sigmoidal 

model were used to construct phase angle master curves as shown in Figure 4.10. The 

differences between the dynamic modulus master curves did not follow a clear trend that 

matched with the binders’ performance grade results. Hence it was not possible to assess 

the impact of the soybean rejuvenator on the dynamic modulus of the tested mixture. The 

dynamic modulus measures the stiffness of the asphalt mixture and is affected by the air 

content, aggregate gradation, asphalt content, in addition to the binder’s viscosity. 

Accordingly, differences in the binder’s viscosity may not be as obvious. All mixtures 

had an air void content of 4% so the dynamic modulus values should be expected to 

increase with low air voids(Yu and Shen 2012). On the other hand, the RAP had a fine 

gradation which tend to decrease the dynamic modulus(Daniel and Lachance 2005). 

Another important factor is the degree of blending between the RAP binder and the virgin 

binder during actual mixing which determines the actual reduction in the total binder’s 

stiffness. The dynamic modulus results include the effect of all the above factors and 

hence it was difficult to isolate the binder’s effect.  Moreover, a study on RAP mixtures 

conducted at the University of Minnesota revealed that the conditions of the dynamic 
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modulus testing may affect the results of mixtures containing high RAP content (Li et al. 

2008). The study suggested that microcracks could develop in the specimen when tested 

at low temperatures, due to the stiffness of the RAP binder. These microcracks affect the 

specimen’s performance at high temperature testing, leading to lower observed stiffness. 

A more representative test to assess the impact of the soybean modification is the 

disk-shaped compact test (DCT). Unlike the dynamic modulus test, the DCT test 

measures fatigue cracking at higher loading capacity and a lower test temperature. 

Fatigue cracking is critical to mixtures prepared with RAP. The next section presents the 

results of the DCT test performed on both the control and modified mixtures.  

 

Figure 4.9. Dynamic modulus master curves for asphalt mixtures 
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Figure 4.10. Phase angle master curves for asphalt mixtures 

4.3.5 Disk-shaped compact tension (DCT) 

RAP mixtures with the addition of either a virgin PG58-28 or a 12% soybean-

modified PG58-28 were prepared. For each of the two test mixtures, a total of five 

replicate specimens measuring 50mm in thickness and 150mm in diameter were prepared 

as per ASTM D7313. A notch 1.5-mm wide is cut along the diameter of the specimen. A 

flat surface is cut perpendicular to the notch as per the specimen dimensions specified in 

ASTM D7313. The specimens were conditioned at the desired test temperature of -6oC in 

a refrigerator for 3 hours prior to testing. The instrument loading rods were inserted into 

dual openings cored into the specimen. The loading rods are used to pull the specimen 

apart at a rate of 1mm/min. The crack mouth opening displacement (CMOD) is 

monitored using a clip gauge extensometer. Upon testing, a seating load of 0.1 kN was 

first applied to ensure the specimen is tightly held in place. The fracture energy 

constitutes the amount of work needed to crack a unit area. The work done is calculated 
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by measuring the area under the load-displacement curve. The fractured area is taken as 

the product of the specimen thickness and the ligament length.  

The DCT test results are shown in Table 4.3 below. The average fracture energy 

of the mixtures made with the soybean rejuvenated RAP binder was on average higher 

than that of the control mixtures. A t-test conducted on the data resulted in a p-value of 

0.3. The large p-value is attributed to the high variability nature of the DCT testing, 

which is very sensitive to the notch size and specimen dimensions. The coefficient of 

variation in the results were similar for both types of mixtures. The average fracture 

energy of the control mixture did not pass the minimum threshold of 400 J/m2 (Buttlar et 

al. 2010), whereas the mixtures rejuvenated with the soybean additive exceeded that 

minimum.    

Table 4.3. DCT results for the tested mixtures 

Mixture type Average fracture 

energy (J/m2) 

Coefficient of 

variation 

RAP+ 58-28 377 0.17 

RAP+ 12% Mod58-28 424 0.18 

 
4.4 Summary and Conclusions 

In this study, a soybean-derived rejuvenator was used to modify a PG58-28 at a 

dosage of 6% and 12% by weight of binder. The soybean-modified binder was then 

blended with an extracted RAP binder at a ratio of 1 part modified PG58-28 to 5 parts 

RAP, resulting in an effective rejuvenator dosage of 1% and 2% by weight of the binder 

blend respectively. A control blend was prepared by mixing the neat PG58-28 with the 

RAP binder at the same ratio. The critical high and low temperatures of the RAP binder 

dropped significantly with the use of the soybean rejuvenator. The RAP binder changed 

from a PG106-10 to a PG76-16 using the 6% modified PG58-28 and to a PG70-22 with 
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the 12% modified PG58-28. In comparison, the control blend, using the neat PG58-28, 

merely changed the RAP binder to a PG100-10. Hence, the neat binder acting alone had 

insignificant impact on the critical temperatures of the RAP binder. This means that the 

soybean rejuvenator is largely responsible for any changes in the critical temperatures.  

At intermediate temperatures, the linear amplitude sweep (LAS) test results 

showed a considerable improvement in the fatigue life of the PAV-aged binders upon 

adding the soybean-derived rejuvenator. This effect was higher for the lower test 

temperature of 25oC compared to that of 31oC. Even though LAS results serve as a good 

indication of the fatigue life of asphalt mixtures, future work will include fatigue testing 

on rejuvenated RAP mixtures to verify the findings of LAS results.  

The binder master curves showed a consistent decrease in stiffness and an 

increase in phase angle with the soybean-derived rejuvenator. Such increase remained 

significant following PAV aging of the binders. Hence, it can be concluded that the 

rejuvenation effect was sustained with PAV aging which attests to the durability of the 

rejuvenator. On the other hand, the PAV-aged control blend did not show significant 

differences from the PAV-aged RAP binder.  

Dynamic modulus specimens were prepared using 100% RAP mixtures blended 

with a neat PG58-28, a 6% soybean-modified PG58-28 and a 12% soybean-modified 

PG58-28. Both the dynamic modulus and phase angle master curves did not reveal any 

differences between the various mixtures. It was not clear whether this result was due to 

incomplete blending between the RAP binder and the virgin binders. Another possible 

explanation would be that the dynamic modulus values represent a lot of contributions 

from various properties of the mixture, so the binder effect may not be clearly discerned.  
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Disk-shaped compact tension (DCT) specimens were prepared using 100% RAP 

mixtures blended with a neat PG58-28 and a 12% soybean-modified PG58-28. The 

specimens made with the soybean rejuvenated mixture showed a higher fracture energy 

compared to the other set of specimens.  

Based on this study, the soybean-derived rejuvenator was proven successful in 

enhancing the fatigue and low temperature properties of the extracted RAP binders as 

well as 100% RAP mixtures. Future research will investigate ways to improve blending 

between the RAP binder and the rejuvenator during actual mixing to better enhance 

mixture properties.  
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CHAPTER 5. THERMAL STABILITY AND EVOLVED GAS ANALYSIS OF 

REJUVENATED RECLAIMED ASPHALT PAVEMENT (RAP) BITUMEN 

USING THERMOGRAVIMETIRC ANALYSIS-FOURIER TRANSFORM 

INFRARED (TGA-FTIR) 

Modified from a paper submitted to the Journal of Thermal Analysis and Calorimetry 

Mohamed Elkashefa*, R. Christopher Williamsa and Eric Cochranb 

Abstract 

Several reports exist on the use of natural-oil based materials as rejuvenators to 

restore the properties of aged binders. More specifically, regarding their ability to 

enhance the binders’ low temperature properties and to reduce their stiffness. The extent 

of blending between a rejuvenator and a RAP binder impacts the efficiency of the 

rejuvenator. In this research, a PG58-28 binder modified with a soybean-derived 

rejuvenator at 12% by weight, is added to an extracted RAP binder at a ratio of 1:5 

resulting in a rejuvenator dosage rate of 2% by total weight of binder. The performance 

grade (PG) of the rejuvenated RAP binder is determined using both Dynamic Shear 

Rheometer (DSR) and Bending Beam Rheometer (BBR). The low temperature fatigue 

cracking of the rejuvenated RAP binder is assessed using the Glover-Rowe parameter 

through DSR testing. Mixtures made of 100% RAP aggregates are prepared, with the 

addition of a neat PG58-28 and a soybean-modified PG58-28, and their fracture energy is 

determined using disc compact tension (DCT) testing. To assess the degree of blending, 

mixtures representing full blending condition were prepared using extracted RAP binder 

blended with PG58-28 and soybean-modified PG58-28, and mixed with the extracted 

RAP aggregate. These mixtures were tested using DCT. The thermal stability of the 

rejuvenator and the binders is determined using thermogravimetric analysis (TGA). The 
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evolved gases from the TGA analysis are analyzed using Fourier Transform Infrared 

(FTIR) to chemically characterize the rejuvenator and the binders.    

5.1 Introduction 

Recently, reclaimed asphalt pavement (RAP) has been the subject of extensive 

research since it offers an environmental friendly and economically viable alternative to 

offset the increasing binder and aggregate costs. However, the aged properties of RAP 

binders preclude application of high content RAP mixtures. The use of RAP in new 

mixtures was limited to only 20% by weight during the year 2014 [1]. RAP binder 

undergoes excessive oxidation leading to high stiffness and low stress relaxation ability 

[2]. High RAP content mixtures also can be difficult to field compact which might lead to 

unexpected premature failure [3].  

Addition of a softer virgin binder, using higher binder content, and employing 

warm-mix technology are among a number of techniques to allow for the use of RAP in 

asphalt mixtures [4].  However, none of these techniques seem to be effective for 

mixtures containing high RAP content [5]. The introduction of rejuvenators has paved the 

way for using higher percentages of RAP in asphalt mixtures. Rejuvenators can help 

partially or fully restore aged binders’ properties to their original state.  

Binder aging is characterized by a change of the maltenes fraction into asphaltene 

through oxidation. The amount of asphaltene is related to the viscosity of asphalt [6]. An 

increase in asphaltene with aging cause the binder to exhibit high stiffness and a low 

creep rate. Rejuvenators recreates the balance between the asphaltene and maltene by 

providing more maltenes and/or by allowing better dispersion of the asphaltenes [7]. 
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Improvement in the low temperature properties and stiffness of rejuvenated aged 

binders have been verified by a number of studies [7, 8]. Several rejuvenators derived 

from petroleum based aromatic extracts, distilled tall oil, and organic oils have been 

successfully implemented [9] . A recent study investigated the fatigue behavior of neat 

and polymer modified binders rejuvenated with a soybean-derived material using Glover-

Rowe fatigue diagram [10]. Aging was shown to push the binders closer to the damage 

lines, while rejuvenation had a restoring effect moving the binders away from the damage 

lines. The use of the soybean-derived rejuvenator caused a reduction in the complex shear 

modulus and an increase in the phase angle, which was opposite to the effect of aging. 

The rate of aging was also noted to decrease upon rejuvenation in the case of the polymer 

modified binder [10].  

The disk compact tension (DCT) test is commonly used to evaluate the low 

temperature performance of mixtures containing RAP [11]. The fracture energy, in J/m2, 

measured through the DCT test can be used as an indication of field performance. A 

comprehensive study that involved DCT testing on cores taken from different pavements 

revealed that a fracture energy between 350-400 J/m2 was indicative of sufficient thermal 

and reflective cracking resistance [12]. A fracture energy above 400 J/m2 was obtained 

for pavements with minimal transverse cracking. Accordingly, it was concluded that a 

minimum fracture energy of 400 J/m2 is required to ensure adequate low temperature 

performance [12]. The DCT was also used to assess mixtures made with varying 

percentages of RAP and recycled asphalt shingles (RAS) [13]. It was shown that the 

presence of recycled materials lowered the fracture energy of the mixtures. Another study 



www.manaraa.com

118 

 

looked into the effect of aging on low temperature behavior through DCT testing [14]. It 

was shown that the fracture energy decreased consistently with aging.  

Thermogravimetric analysis (TGA) is used to determine mass loss as a function of 

temperature. TGA can either be done in an inert environment using nitrogen or in an 

oxidative environment using air. An inert environment does not allow for combustion to 

occur. TGA under nitrogen has been previously used to characterize asphalt binders with 

different asphaltene contents [6]. A relation between the asphaltene content and the 

decomposition temperatures of asphalt was noted. The thermal stability decreased with 

more asphaltene content resulting in a  lower char yield [6]. In a recent study, TGA of 

binder blends containing re-refined vacuum tower bottoms (RVTB) was performed under 

nitrogen and air to assess changes in the thermal stability [15].  The binders were heated 

under nitrogen until the mass loss reached a plateau at around 600oC. Air was then 

introduced and the temperature raised to 800oC to burn off the remaining constituents. 

The remaining mass referred to as ash was less than 2%. No significant changes in the 

thermal stability was noted between the neat binder and the binder blended with 9% 

RVTB. TGA was also used to characterize binders modified with styrene-butadiene-

styrene polymer and tall oil pitch [16]. It was concluded that the modified binders were 

thermally stable at the mixing and compaction temperatures of asphalt concrete 

pavements. Recently, TGA was coupled with mass spectrometry to study chemical 

changes in aged binders [17]. The TGA analysis was performed under a flow of argon up 

to a temperature of 900oC. It was noted that char yield decreased from 17% to 6% with 

aging.  
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Natural oils have been successfully used as bio-derived alternatives to petroleum-

based rejuvenators containing carcinogenic aromatic extracts [9]. Distilled tall oil, cotton 

seed oil, vegetable oil, and soybean oil are examples of materials previously used to make 

rejuvenators [8, 18].  Soybean oil holds great potential due to the abundant production of 

soybeans in the United States. The United States is responsible for about one third of the 

world soybean production [19]. Most of the soybean output goes into the livestock 

industry to make soybean meal, or is used to make soybean oil which is then converted 

into biofuel through transesterification [20]. 

Several studies have used soybean oil in asphalt modification. Soybean acidulated 

soapstock (SAS), a rich source of soybean fatty acids, was introduced as a flux agent 

[21]. SAS at a dosage rate of 1-3% led to a decrease in the critical high temperature and 

an enhancement in the low temperature properties. Soybean oil was also used as a warm-

mix asphalt additive to reduce the mixing and compaction temperature by 3.4°C with 1% 

dosage [22]. In a recent study, a soybean-derived rejuvenator have been successfully used 

to lower the stiffness and improve fatigue performance of a neat PG58-28 and a polymer 

modified PG64-28 binders with sustained durability as verified by Fourier transform 

Infrared-Attenuated total reflection (FTIR-ATR) [23]. The ability of the soybean-derived 

rejuvenator to improve the fatigue and low temperature cracking resistance of 100% RAP 

mixtures was shown through dynamic modulus testing, linear amplitude sweep testing 

and binder master curves [24]. In this work, the thermal stability of RAP binders 

rejuvenated with soybean-derived material is assessed as well as the degree of blending 

between the virgin binder and RAP binder in the rejuvenated RAP mixtures.    
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5.2 Materials and Methods 

The binder used in this study is a neat PG58-28. A soybean-derived material is 

used as a rejuvenator. Reclaimed asphalt pavement (RAP) was milled from pavements in 

the State of Iowa, USA. The RAP had a nominal maximum aggregate size of 12.5 mm 

and a binder content of 5.1%.  

The extraction of the RAP binder was conducted as per ASTM D2172-Method A- 

using toluene. A rotary evaporator was then used to evaporate out the toluene and recover 

the RAP binder as per ASTM D5404. The recovery process was performed under a 

nitrogen blanket to prevent further oxidation of the binder. The recovered RAP binder 

was tested using a Dynamic Shear Rheometer (DSR) to determine their RTFO high 

critical temperature.  PAV-aged RAP binder was tested using a Bending Beam 

Rheometer (BBR) to determine their low critical temperature.   

The soybean rejuvenator was added to the PG58-28 binder at a dosage of 12%. A 

neat PG58-28 and the 12% modified PG58-28 were then blended with the extracted RAP 

binder at a ratio of 1:5, resulting in an effective rejuvenator dosage of 0% and 2%, 

respectively. A pure RAP binder was also used as a control.  

For performance grade evaluation, DSR and BBR tests were conducted as per 

AASHTO T315 and AASHTO T313, respectively. Short-term aging using a Rolling Thin 

Film Oven (RTFO), was done according to ASTM D2872 at 163oC for 85 minutes. Long-

term aging using PAV was conducted on the RTFO aged binder as per ASTM D6521 for 

a duration of 20 hours at 100oC and 2.1 MPa pressure. 

To assess fatigue using the Glover-Rowe parameter, DSR testing was done at a 

temperature of 44.7oC and a frequency of 10 rad/s. The Glover-Rowe damage lines were 
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plotted and the condition of the various binders at different aging conditions were marked 

on the Glover-Rowe diagram. 

To evaluate low temperature cracking resistance, the Disc Compact Tension 

(DCT) test was conducted in accordance with ASTM D7313 at a temperature of -6oC. 

DCT specimens measuring 50mm in thickness and 150mm in diameter were used. Three 

samples were prepared and tested for each mixture at the desired test temperature and the 

average fracture energy was reported. Specimens were conditioned at the test temperature 

for 2 hours prior to testing. The load was applied using loading rods inserted into two 

holes cored into the specimen, at rate inducing a crack mouth opening displacement 

(CMOD) of 1 mm/min.  

Thermogravimetric analysis (TGA) was performed using a Netzsch STA449 F1 

instrument to assess the thermal stability of the studied binders, namely RAP, 

RAP+PG58-28 and RAP+ 12% modified PG5-28. TGA was also conducted on the 

soybean-derived rejuvenator to determine its thermal decomposition behavior. A 5-mg 

sample was placed in an alumina crucible and an internal mass balance allowed recording 

changes in mass with temperature. The instrument also provided differential scanning 

calorimetry (DSC) data. A reference crucible made of alumina was used and the 

difference in heat flow needed to keep the sample crucible at the same temperature as the 

reference crucible was recorded. DSC data can be used to identify endothermic and 

exothermic events taking place during the heating process. DSC data was retrieved and 

used to further analyze the thermal behavior of the soybean-derived rejuvenator.   

To provide some insight on the chemical composition of the binders and the 

rejuvenator, the evolved gases from the TGA run was analyzed using Fourier Transform 
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Infrared (FTIR). The TGA instrument is connected to a Bruker Tensor 37 FTIR 

instrument. An FTIR spectrum was acquired every 15 seconds so a complete analysis of 

the evolved gases can be obtained. FTIR is useful to identify different functional groups 

within the sample. The FTIR spectra of the rejuvenator can be studied and a comparison 

between the chemical composition of the unrejuvenated and rejuvenated binders can be 

made.  

5.3 Results and Discussion 

5.3.1 Performance Grading 

The performance grades of the control RAP binder as well as the rejuvenated 

RAP binders were determined and are listed in Table 5.1. The critical high temperature 

was obtained using DSR testing in accordance with AASHTO T315 as per the criteria 

G*/sinδ>1 kPa and G*/sinδ>2.2 kPa for both the unaged and RTFO aged binders. No 

unaged result is available for the extracted RAP binder since it was considered RTFO 

aged. The RAP binder failed at a high temperature of 108.6oC. No appreciable drop in the 

critical high temperature was noted with the addition of the neat PG58-28. However, the 

modified PG58-28 resulted in a reduction in the critical high temperature from 108.6oC to 

73.9oC. A similar reduction in the critical low temperature was noted from -10.8oC to -

22.3oC. The overall effect of the 12% modified PG58-28 was to bring down the PG of the 

RAP binder from PG106-10 to PG70-22.   
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Table 5.1: Rheological properties of tested binders 

Binder RAP RAP+ 

PG58-28 

RAP+ 

12%Modified 

PG58-28 

Unaged (High Temp.), oC NA 105.6 76.2 

RTFO (High Temp.), oC 108.6 99.9 73.9 

PAV (Low Temp.), oC -10.8 -11.9 -22.3 

Performance Grade (PG)  106-10 100-10 70-22 

Mass loss (%) NA 0.4 0.5 

The mass loss values show that there was no considerable mass loss difference 

due to the addition of the soybean-derived rejuvenator, which points to its thermal 

stability. A more thorough analysis of the thermal stability of the rejuvenator will be 

given by the TGA results.  

5.3.2 ΔTc parameter 

The PAV low temperature shown in Table 5.1 is the minimum temperature at 

which both the stiffness and m-value from the BBR test satisfy the conditions set forward 

in ASTM D7643. Recently, there has been a lot of interest in studying both the stiffness 

and m-value property independently and in relation to one another [25]. Aged binders 

have shown to exhibit more deterioration in their m-values [26]. With aging, the 

difference between the temperature at the limiting stiffness S=300MPa (Tc,S) and the 

temperature at the limiting m-value m=0.4 (Tc,m) starts to increase. To provide more 

insight into the low temperature properties, the values of both Tc,S and Tc,m are plotted in 

Figure 5.1. It is seen that the addition of the PG58-28 did not affect the values of both 

temperatures significantly. The addition of the soybean rejuvenator caused a decrease in 

both temperatures. However, there was more drop in the value of Tc,m compared to the 

value of Tc,S upon the addition of the rejuvenator. As explained earlier, aged binders 

suffer from a largely reduced m-value which significantly lower their stress relaxation 

properties. The effect the rejuvenator has on the value of Tc,m clearly illustrates its ability 
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to restore the stress relaxation properties of the aged binder. The difference between Tc,S 

and Tc,m was defined as ΔTc [25]. The ΔTc parameter for the RAP, RAP+ PG58-28 and 

the RAP+12% modified PG5-28 binders was calculated as -9.7oC, -9.2oC and -5.5oC. A 

more negative ΔTc value is characteristic of an aged binder. The ΔTc was improved 

significantly with the soybean rejuvenator.  

 

Figure 5.1. Values for Tc,S and Tc,m for the tested binders 

5.3.3 Rutting and Fatigue parameters 

Figure 5.2 shows the variation of the rutting parameter, G*/sinδ, with temperature 

for all three binders. The data shown in Figure 5.2 was obtained using DSR testing at a 

frequency of 10 rad/s using RTFO-aged binders. Unaged binders could not be assessed 

since there was no unaged data for the RAP binder. Additionally, the critical high 

temperature, shown in Table 5.1, was limited by the RTFO-aged binder rutting 

performance. For RTFO-aged binders, rutting performance is considered acceptable 

when the measured rutting parameter is above 2.2KPa, as specified by AASHTO T315. 
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RAP binders, being very stiff, typically have high resistance against rutting. With the 

addition of the rejuvenator, the stiffness drops and so does the rutting resistance. The 

rejuvenated RAP binder showed acceptable rutting resistance up to a temperature of 

73.9oC.  

 

Figure 5.2. Variation of G*/sinδ parameter with temperature 

The fatigue parameter G* sin examines the fatigue performance at intermediate 

temperature. The critical intermediate temperature is defined as the value when G*sin = 

5000 kPa as per AASHTO T315. Figure 5.3 shows the variation of G* sin with 

temperature. The rejuvenated RAP binder shows a lower critical intermediate 

temperature compared to both the control RAP binder and the RAP binder blended with 

the PG58-28. The fatigue parameter for the rejuvenated binder however increases relative 

to the other two binders below a temperature of around 18oC. This is largely due to the 

increase in phase angle with the addition of the rejuvenator.  
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The fatigue parameter G*sin adopted by Superpave is a measure of energy 

dissipation. A lower fatigue parameter indicates less energy dissipated in the form of 

cracks and deformation.  This parameter however has been scrutinized recently 

specifically due to its insensitivity to aging [26]. A recently developed parameter, namely 

the Glover-Rowe parameter, will be used to further study the fatigue performance and 

aging characteristics of the binders in the next section.  

 

 

Figure 5.3. Variation of G* sinδ parameter with temperature 

5.3.4 Glover-Rowe Parameter 

The Glover-Rowe Parameter has been recognized as a valuable tool to investigate 

fatigue in bitumen. The parameter was based on the work done by Glover [26] who 

initially introduced the parameter in the form of 𝐺′/ (
𝜂′

𝐺′⁄ ) where 𝐺′ is the storage 

modulus and 𝜂′is the dynamic viscosity. Glover’s fatigue parameter was found to 

correlate well with ductility measurements made by Kandhal [27]. The fatigue parameter 
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was later simplified in the form of 𝐺∗ ∗ 𝜔 ∗ 𝑐𝑜𝑠𝛿
2

𝑠𝑖𝑛𝛿⁄  . The parameter can be 

calculated using DSR measurements at 15oC and 0.005 rad/s, where the data correlated 

best with ductility and field performance. Two damage zones were identified denoting 

the onset of cracking and significant damage. The damage zones are defined in terms of 

the fatigue parameter per the equations: 𝐺∗ ∗ 𝑐𝑜𝑠𝛿
2

𝑠𝑖𝑛𝛿⁄ = 180⁡𝑘𝑝𝑎 for damage onset 

and⁡𝐺∗ ∗ 𝑐𝑜𝑠𝛿
2

𝑠𝑖𝑛𝛿⁄ = 600⁡𝑘𝑝𝑎 for significant damage. Since it is impractical to 

perform DSR testing at the shear rate of 0.005 rad/s, it was proposed to run the testing at 

a temperature of 44.7oC and a frequency of 10 rad/s [25]. 

DSR testing was performed on the RTFO aged and the RTFO+PAV aged binders 

at a temperature of 44.7oC and a frequency of 10 rad/s. The complex shear modulus and 

the phase angle for each of the binders at the respective aging condition were noted and 

marked on the Glover-Rowe fatigue diagram in Figure 5.4. The Glover-Rowe damage 

lines were also plotted indicating onset of damage and significant damage. For all 

binders, PAV aging cause a shift towards the upper left corner of the diagram denoting 

higher stiffness and lower phase angles. For the RAP binder, the deteriorated condition of 

the binder was evident by its proximity to the significant damage line. The diagram 

predicts the PAV-aged RAP binder to show significant signs of fatigue cracking if used 

as is. Blending the RAP binder with a PG58-28 did not considerably improve its fatigue 

resistance. The PAV-aged RAP binder blended with PG58-28 is still destined to total 

failure under fatigue, as suggested by the diagram. Using the soybean-derived rejuvenator 

clearly improved the fatigue cracking resistance of the RAP binder. The rejuvenator 

helped reduce the stiffness as well as increase the phase angle hence shifting the RAP 

binder away from the damage zone. It is also worth noting that the rate of damage with 
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PAV aging was lower with the rejuvenated RAP binder compared to the pure RAP binder 

and the RAP binder blended with the neat PG58-28.  

 

Figure 5.4. Glover-Rowe diagram 

5.3.5 Disk-shaped compact tension (DCT)  

DCT specimens were prepared using 100% RAP aggregate mixed with virgin 

binder. The RAP aggregate, having a 5.1% binder content, was mixed with virgin binder 

to bring the binder content to a total of 6%. Two groups of specimens were made using 

neat PG58-28 and 12% modified PG58-28 as virgin binders. During actual mixing, the 

virgin binder does not fully blend with the RAP binder. Hence, these specimens 

represented real/partial blending conditions. To assess full blending condition, RAP 

binder was first extracted and recovered from the RAP aggregate. The RAP binder was 

then blended with the virgin binder; neat PG58-28 or 12% modified PG58-28. The 

resulting blend was then remixed with the recovered bare RAP aggregate and compacted 

to produce two additional groups of DCT specimens representing full blending 



www.manaraa.com

129 

 

conditions. In total, four groups of specimens were prepared and tested, to assess the 

difference in performance between the neat PG58-28 and the 12% modified PG58-28 

considering both real/partial and full blending with the RAP binder. Testing for all 

specimens was done at -6oC. All mixtures were prepared with a total binder content of 

6% and a target air void content of 4%. Mixing and compaction was done at a 

temperature of 140oC.  

The DCT test results for both real blending and full blending conditions are 

shown in Table 5.2. In general, the average fracture energy of the mixtures prepared with 

the rejuvenated PG58-28 binder was higher than the mixtures prepared using the neat 

PG58-28. Regardless of the blending condition, the fracture energy of the RAP mixtures 

made with the neat PG58-28 were lower than the minimum threshold of 400J/m2 required 

to provide adequate transverse cracking performance [12]. The difference between the 

real blending and full blending conditions for these mixtures was not discernable due to 

the fact that the low temperature performance grades of the pure RAP binder and the 

RAP binder modified with neat PG58-28 were not distinctly different as shown in Table 

5.1.  

Typically, DCT testing is done at a temperature which is 10oC higher than the 

binder’s low temperature performance grade (PG). Noting that the low temperature 

performance grade of the RAP + 12% modified PG58-28 blend was -22oC as shown in 

Table 5.1, one would expect the mixtures prepared with the rejuvenated PG58-28 to 

provide satisfactory performance up to a test temperature of -12oC. However, the DCT 

results under real blending conditions show that these mixtures barely exceeded the 
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minimum threshold of 400J/m2 at a test temperature of -6oC. When full blending 

condition was achieved, the fracture energy of these mixtures increased to 528 J/m2.  

Partial or improper blending can cause non-uniform distribution of the rejuvenator 

throughout the aged RAP binder. This non-uniform blending creates spots of 

unrejuvenated stiff RAP binder which acts as stress concentration regions leading to 

reduced fracture energy. The large coefficient of variation noted with the real blending 

mixes could be an indication of non-uniform blending as indicated above.  

The results clearly indicate that the degree of blending can have a major impact 

on the performance of the rejuvenated RAP mixtures. It is thus of paramount importance 

to ensure a high degree of blending so that the full potential of the rejuvenator is 

achieved. A comprehensive study into the way the rejuvenator is added and mixed with 

the RAP mixtures is important to ensure proper blending.   

Table 5.2: DCT results for the tested mixtures at -6oC 

 Real blending  Full blending 

Mixture Type Average 

fracture energy 

(J/m2) 

Coefficient of 

variation 

Average 

fracture energy 

(J/m2) 

Coefficient of 

variation 

RAP + PG58-28 377 0.17 379 0.07 

RAP + 12% Mod PG58-28 424 0.18 528 0.06 

 

5.3.6 Thermogravimetric analysis (TGA)  

TGA was conducted for all three binders to assess changes in their mass with 

temperature. The binders were heated from 50oC to 1000oC at a rate of 20oC/min. 

Nitrogen was used as a purging gas at a flow rate of 20 ml/min to prevent combustion 

until a temperature of 550oC was reached. At this temperature, the purging gas was then 

changed to a 50:50 mixture of oxygen and nitrogen at a total flow rate of 20 ml/min. The 
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use of oxygen helped promote combustion of the remaining asphalt constituents beyond a 

temperature of 550oC.  

The TGA curves for all three binders are shown in Figure 5.5. All curves show 

four distinct regions. The initial region showing minimal mass loss. The end of this 

region is marked by the initial decomposition temperature which is hereby defined as the 

temperature where the mass loss reached a value of 2%. The second region shows a 

consistent mass loss denoting thermal decomposition of asphalt constituents. A third 

region which starts around 540oC exhibits a near horizontal plateau indicating no further 

mass loss. The fourth and last region represents the combustion of the remaining 

carbonaceous constituents upon the addition of oxygen. 

Figure 5.6 shows the first derivative of the TGA curve, referred to as the 

derivative thermogravimetric (DTG) curve. DTG provides information about the rate of 

change of mass loss with temperature, and can be used to identify the temperature at 

which this rate reaches a maximum. The region in the DTG curve where the rate of mass 

loss was nearly zero corresponds to the part of the TGA curve where negligible mass loss 

was occurring. The thermal decomposition region showed an increasing rate of mass loss 

up to a temperature of 470-480oC where the rate of mass loss was maximized. Beyond 

this temperature, the rate of decomposition starts to drop down until it reaches a near zero 

value at about 540oC where no significant mass loss was taking place. The addition of 

oxygen at a temperature of 550oC triggered further mass loss because of combustion. The 

combustion process resulted in two more mass loss peaks at around 600-620oC and 

700oC. 
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Figure 5.5. TGA curves of studied binders  

 

Figure 5.6. DTG curves of studied binders 

Table 5.3 shows the initial decomposition temperature (IDT), char yield 

percentage, and percentage residue for all three binders, obtained from the TGA curves. 

The char yield is the mass remaining at a temperature of 550oC, and the percentage 
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residue is the remaining percentage of asphalt material at the end of the analysis. A study 

of the parameters in Table 5.3, as well as a comparison of the TGA curves, clearly 

indicate that the RAP binder shows the highest thermal stability among all three binders. 

This result confirms with the fact that aged binders have a large portion of asphaltene 

which are thermally stable at high temperatures. The increased thermal stability is 

evidenced by the high initial decomposition temperature, as well as the high percentage 

of char yield and residues. Adding a softer binder, PG58-28, lowers the initial 

decomposition temperature by a few degrees, from 316oC to 309oC, as given by Table 

5.3.  

More importantly is the effect of the soybean-modifier on the TGA curve, DTG 

curve and the TGA parameters. The TGA results point to the fact that the addition of the 

soybean rejuvenator does not seem to impact the binders’ thermal stability. The TGA and 

DTG curves of the soybean rejuvenated binder does not deviate much from the RAP+ 

PG58-28 binder. It is also important to note that there was no sign of thermal 

decomposition of the rejuvenator at normal asphalt mixing and compaction temperatures.  

Table 5.3: TGA results of the studied asphalt binders 

 IDT (oC) Chair yield (%) Residue (%) 

RAP  316 30 7 

RAP + PG58-28 309 26 6 

RAP + 12% Mod PG58-28 309 26 6 

 

To assess the thermal stability of the pure soybean-derived rejuvenator. TGA was 

conducted on a 5-mg sample of pure rejuvenator placed in an alumina crucible under the 

same conditions described above. The TGA and DTG plots are shown in Figure 5.7. The 

TGA curve shows good thermal stability up to a temperature of around 300oC. Following 

this temperature, the rejuvenator starts to thermally decompose at an increasing rate. An 
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abrupt mass loss is observed from 370oC -400oC where more than 60% of the soybean-

derived rejuvenator is lost. The DTG curve shows a peak mass loss at around 390oC. The 

entire sample was thermally degraded at the end of the temperature program leaving no 

residue behind.  

 

Figure 5.7. TGA and DTG curves of the soybean-derived rejuvenator 

Figure 5.8 provides a DSC curve for the soybean-derived rejuvenator. Positive 

and negative peaks on this plot indicate exothermic and endothermic events, respectively. 

The DSC curve shows two distinct exothermic events. The first event around 390oC 

relates to the thermal decomposition of the rejuvenator. The sharpness of this peak is an 

indication of the homogeneity of the rejuvenator sample. The second peak around 580oC 

denotes the combustion of the sample under oxygen. 
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Figure 5.8. DSC curve of the soybean-derived rejuvenator 

5.3.7 FTIR analysis 

An FTIR spectrum can be collected for the evolved gases from the TGA analysis. 

The FTIR spectrum for the gases produced during the TGA analysis of the soybean-

derived rejuvenator at a temperature of 390oC is shown in Figure 5.9. This temperature 

corresponds to the maximum mass loss of the rejuvenator as determined earlier from the 

TGA results. The FTIR spectrum of the soybean-derived rejuvenator shows a distinct 

peak at 1736cm-1 which corresponds to the C=O stretch in the ester moiety present in the 

rejuvenator’s structure. The ester moiety is also characterized by the peaks at 1015cm-1 

and 1153cm-1 which correspond to the C-O stretch. 
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Figure 5.9. FTIR Spectrum for the rejuvenator at 390oC.  

The FTIR spectra obtained for the evolved gases from the three different binders 

at 390oC are shown in Figure 5.10. The peak at 2930cm-1, which corresponds to the C-H 

stretch in the alkane hydrocarbon structure, was used to normalize the three spectra. The 

characteristic peaks of the rejuvenator appear in relatively high intensity in the 

rejuvenated RAP binder. These peaks are absent or are of negligible intensity in the other 

two binders that did not contain the rejuvenator. 

The FTIR spectra can also serve as an indication of the rate of mass loss of the 

rejuvenator. This is done by comparing the relative intensities of the rejuvenator’s 

characteristic peaks; ester peaks, in the rejuvenated binder. To illustrate this, the FTIR 

spectra for the three binders at a temperature of 500oC are displayed in Figure 5.11. At 

this temperature, the rate of mass loss of the rejuvenator is considerably lower than at 

390oC, as per the TGA results. The characteristic peaks of the rejuvenator at 1736cm-1, 

1015cm-1, and 1153cm-1 are barely discernable in the spectra in Figure 5.11. The is 
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because only a small amount of the rejuvenator is still evolving at this temperature. 

Hence, the relative intensity of the rejuvenator’s peaks in the binder can provide a clue 

about the rate at which the rejuvenator is thermally decomposing at a given temperature.  

 

Figure 5.10. FTIR Spectrum at 390oC.  

 

Figure 5.11. FTIR Spectrum at 500oC.  
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5.4 Summary and Conclusions 

The work done in this paper aimed at investigating the impact of using a soybean-

derived rejuvenator on the properties and thermal stability of a RAP binder. Rejuvenated 

RAP mixtures prepared with 100% RAP aggregate were also assessed based on their 

DCT fracture energy results. The effect of blending was also highlighted.  

The use of the soybean-derived rejuvenator clearly brought down the RAP binder 

performance grade to acceptable working ranges. The highly stiff RAP with a PG of 106-

10 was changed to a PG70-22 with the addition of the 12% soybean-modified PG58-28, 

for a 2% rejuvenator dosage of the total binder. No significant mass loss was noted due to 

the addition of the soybean-derived rejuvenator.  

The Glover-Rowe parameter showed considerable improvement in the fatigue 

cracking resistance for the rejuvenated RAP binder. The rate of aging of the rejuvenated 

RAP binder was lower than that of the control RAP binder, as suggested by the Glover-

Rowe diagram.  

The DCT results showed improvement in the fracture energy with the use of the 

soybean-derived rejuvenator. Such improvement was more pronounced when the full 

blending condition was achieved. The real blending condition showed less increase in 

fracture energy owing to the partial blending between the virgin binder and the RAP 

binder.   

The TGA results verified the thermal stability of the rejuvenated RAP binder. The 

soybean-derived rejuvenator did not show any signs of premature thermal decomposition. 

The TGA curve for the rejuvenated RAP binder showed very similar resemblance to the 

control RAP and the RAP binder blended with PG58-28. FTIR analysis of the evolved 
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gases revealed that the rejuvenator has characteristic peaks which can serve as an 

indication of the rate of its thermal decomposition within the asphalt binder.  
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CHAPTER 6. GENERAL CONCLUSIONS  

6.1 Rejuvenation of a neat and a polymer modified binders 

A soybean-derived additive was introduced as a rejuvenator to enhance the low 

temperature and fatigue properties of binders. At a dosage of 0.75% by weight of binder, 

both a neat PG58-28 and a polymer modified PG64-28 were rejuvenated to improve their 

low temperature performance. The efficiency of the rejuvenator was seen to relate to the 

performance grade of the binder. The PG64-28 showed better improvement in fatigue 

compared to the PG58-28. Rutting susceptibility was however increased by the addition 

of the rejuvenator, which could be controlled by adjusting the dosage rate of the 

rejuvenator. The rejuvenator led to a reduction in viscosity promoting less compaction 

energy. 

Temperature-frequency sweep testing was done using a DSR. The results of the 

temperature-frequency sweeps were used to develop complex shear modulus master 

curves for both the control and rejuvenated binders at different stages of aging, namely 

unaged, RTFO-aged, and PAV-aged. The rejuvenated binders showed a consistent drop 

in the complex shear modulus and an increase in the phase angle at the different aging 

stages. The extent of the change in the complex shear modulus values and phase angles 

was maintained with aging denoting that the rejuvenator had a sustained effect on the 

binders.  

Black diagrams were constructed for the rejuvenated binders using a DSR and 

smooth plots were obtained indicating no phase separation between the rejuvenator and 

the binders with changes in temperature. It was shown that the rejuvenated binders 

showed better fatigue cracking resistance with aging compared to the control binders 

using the Glover Rowe parameter.  
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Dynamic modulus specimens prepared at two different mixing and compaction 

temperatures, namely 120oC and 140oC, were tested at different temperatures and 

frequencies. The resulting dynamic modulus values were lowered considerably for 

mixtures containing the rejuvenator, at all test temperatures and frequencies. The results 

of a split-plot repeated measures (SPRM) statistical analysis showed that the lower 

mixing and compaction temperature of 120oC yielded more reduction in dynamic 

modulus at low test temperatures, particularly for the PG64-28 binder.  

The durability of the rejuvenated binders was assessed using a FTIR-ATR by 

noting the increase in the carbonyl and sulfoxide functional groups with aging. The rate 

of increase in the carbonyl and sulfoxide indices was similar in both the control and 

rejuvenated binders, indicating that the rejuvenator did not have any adverse impact on 

the durability of the binders. 

6.2 Rejuvenation of a reclaimed asphalt pavement (RAP) binder 

In this phase of the research, a soybean-derived rejuvenator was blended with a 

neat PG58-28 at 6% and 12% by weight of binder. The blend was then used to rejuvenate 

an extracted RAP binder at a ratio of 1 part modified PG58-28 and 5 parts RAP. A neat 

PG58-28 was blended with RAP at the same ratio, yielding a control blend. The results 

indicate that the performance grade of the RAP binder was brought down from a PG106-

10 to a PG76-16 and PG70-22 when blended with the 6% rejuvenated PG58-28 and the 

12% rejuvenated PG58-28, respectively.  

Linear amplitude sweep (LAS) testing was done to assess the fatigue performance 

of the rejuvenated RAP binder at different temperatures and strain rates. The fatigue life 
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of the rejuvenated RAP binder was significantly increased especially at lower test 

temperatures and higher strain rates.  

Complex shear modulus master curves revealed a consistent decrease in stiffness 

and increase in phase angle for the rejuvenated RAP binder. This impact on the stiffness 

and phase angle was maintained after PAV aging, which attests to the durability of the 

rejuvenator.  

The fatigue cracking resistance of the rejuvenated RAP binder was greatly 

enhanced as revealed by the Glover-Rowe diagram. The rate of aging of the rejuvenated 

RAP binder was shown to be lower than that of the pure RAP binder.  

6.3 100% RAP mixtures  

6.3.1 Dynamic modulus  

100% RAP mixtures were made by adding a neat PG58-28, a 6% soybean-

modified PG58-28 and a 12% soybean-modified PG58-28. The dynamic modulus test did 

not capture the differences between the binders. The dynamic modulus test results did not 

follow a clear trend that matched with the binder results. The dynamic modulus test 

reflects various mixture properties; hence the contribution of the binder may not be as 

clearly discernable. Partial blending between the RAP binder and the virgin binder could 

possibly have influenced the dynamic modulus test results.  

6.3.2 Disk-shaped compact tension (DCT)  

100% RAP mixtures blended with a neat PG58-28 and a 12% soybean modified 

PG58-28 were made and compacted into disk-shaped compact tension (DCT) specimens 

and subsequently prepared for testing.  The DCT specimens were tested at -6oC. The 

specimens containing the rejuvenator resulted in a fracture energy of 377 J/m2 compared 
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to a fracture energy of 424 J/m2 for the control specimens. DCT specimens simulating 

full blending conditions were prepared by extracting the RAP binder and pre-blending it 

with the virgin binders before re-mixing the blend with the bare extracted aggregate. 

Specimens made as such showed a fracture energy of 379 J/m2 for the control mixtures 

and 528 J/m2 for the rejuvenated mixtures. The increase in fracture energy of the 

rejuvenated mixtures from 424 J/m2 to 528 J/m2 shows that the full potential of the 

rejuvenator can better be achieved if full blending is obtained.   

6.4 Thermal stability of rejuvenated RAP binder 

The thermal stability of the rejuvenated RAP binder was verified by the results of 

the RTFO mass loss and by the TGA results. The addition of the rejuvenator did not 

result in any signs of premature thermal decomposition. The TGA curve of the 

rejuvenated RAP binder was very similar to that of the RAP binder blended with neat 

PG58-28. FTIR analysis of the evolved gases revealed that the rejuvenator has 

characteristic peaks which can serve as an indication of the rate of its thermal 

decomposition within the asphalt binder.  

6.5 Future Research 

Future work should include more testing to further characterize the rejuvenated 

mixtures. This study revealed that the rejuvenator could lead to a reduction in the rutting 

susceptibility of binders. Even though aged RAP binders tend to be very stiff and show 

high rutting resistance. Mixtures prepared with rejuvenated RAP binders must be tested 

against rutting to ensure satisfactory rutting performance. Hamburg Wheel Track Testing 

could be done on both control and rejuvenated 100% RAP mixtures to assess rutting 

resistance. RAP mixtures containing different dosages of the rejuvenator could be 
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prepared and tested for rutting. An optimum rejuvenator dosage can thus be selected 

based on the mixtures performance. Another important factor, which is related to field 

performance, is the effect of moisture on mixtures prepared using the rejuvenator. 

Moisture susceptibility testing, as specified in AASHTO T 283, can be conducted to 

assess the resistance of rejuvenated RAP mixtures against moisture ingression. 100% 

RAP mixtures containing the rejuvenator at various dosages should be prepared and 

tested using indirect tensile strength to determine their tensile strength ratios.  

Moreover, there is a need for incorporating the rejuvenator in field projects where 

the actual performance of both untreated and treated test sections can be compared. An 

extensive study should be undertaken where the rejuvenator should be incorporated in the 

construction of road sections. The performance of the rejuvenated test sections should be 

monitoring throughout an extended period. Pavement coring will need to be made after 

one year to assess the condition of the treated sections. Extraction and recovery should be 

done to characterize the rejuvenated binders. Other tests including DCT should also be 

performed to assess the low temperature properties of the rejuvenated binder.  

The interaction between the binder and the rejuvenator should also be examined 

more thoroughly. The current study showed that the properties of the binder, including 

performance grading, influences the effectiveness of the rejuvenator. A study that 

involves adding the rejuvenator to different binders with varying stiffness should be 

conducted to determine the chemical and rheological changes that occur. The chemical 

nature of these changes could be assessed through a number of different analytical 

characterization tools including chromatography and mass spectrometry.  

 


	2017
	Using soybean-derived materials to rejuvenate reclaimed asphalt pavement (RAP) binders and mixtures
	Mohamed Elsayed Elkashef
	Recommended Citation


	tmp.1510772047.pdf.KQlxO

